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Summary. Newton’s law of gravity states that the force between two objects in the universe
is equal to the product of the masses of the two objects divided by the square of the distance
between the two objects. In the first part of the paper it is shown that a model with a ‘law-of-gravity’
interpretation applies well to the analysis of longitudinal categorical data where the number of
people changing their behaviour or choice from one category to another is a measure of force
and the goal is to obtain estimates of mass for the two categories and an estimate of the dis-
tance between them. To provide a better description of the data dynamic masses and dynamic
positions are introduced. It is shown that this generalized law of gravity is equivalent to Good-
man’s RC(M ) association model. In the second part of the paper the model is generalized to
two kinds of three-way data. The first case is when there are multiple two-way tables and in
the second case we have change over three points of time. Conditional and partial association
models are related to three-way distance models, like the INDSCAL model, and triadic distance
models respectively.

Keywords: Categorical data; Euclidean distance; Gravity model; Longitudinal data; Square
tables; Triadic distance

1. Introduction

This paper will be concerned with longitudinal categorical data, i.e. repeated measurements
on a number of observational units with the same instrument. The main interest in studying
longitudinal data is whether change occurred and, if so, what the nature of the change is. We
shall confine ourselves to the case of categorical data. Our questions concern qualitative change,
i.e. changes in attitude, opinion, behaviour or any other categorical variable. This is typically
different from continuous data where it might be possible to describe change in terms of better
or worse; for categorical data descriptions are in terms of ‘different’ or ‘the same’.

Once longitudinal categorical data have been collected they can be represented in transition
frequency tables, which are contingency tables where each way corresponds to the categories of
a variable measured at a specific time point (we adopt the way mode terminology for the tables
of Carroll and Arabie (1980)). The number of time points defines the number of ways of the
transition frequency table. Having measured a group of people twice on a categorical variable,
a square transition frequency table arises. If measurements are obtained at three time points the
data can be gathered in a three-way contingency table, and so forth.

An example of such data is obtained from Upton and Särlvik (1981) who discussed changes
in political voting in Sweden. The data are shown in Table 1. There are five political parties:
the Communists COM; the Social Democrats SD; the Centre Party C; the People’s Party P; the
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Table 1. Swedish voting data representing voting
changes from 1964 (rows) to 1970 (columns)†

com sd c p con
COM (22) 27 4 1 0
SD 16 (861) 57 30 8
C 4 26 (248) 14 7
P 8 20 61 (201) 11
CON 0 4 31 32 (140)

†From Upton and Särlvik (1981).

Conservatives CON. These are the anglicized names following Upton and Särlvik (1981). The
rows correspond to the political parties in 1964 (in capital letters); the columns to the political
parties in 1970 (lower-case letters).

The focus will be on change, i.e. on the off-diagonal entries. The values on the diagonal are
within parentheses; for these cells special parameters (which are often called loyalty parameters)
will be included in the models to be developed.

The question, once we have such change data, is not whether there is association but what the
pattern of association looks like. We shall propose a model for these data based on Newton’s
law of gravity, which states that the force between any two objects in the universe is propor-
tional to the masses of the two objects and inversely related to the squared distance between the
two objects (Newton’s law of gravity will be discussed in more detail in the next section). This
deterministic model will be applied to the analysis of change where the objects in the universe
are the categories of the variable. The force between two objects is measured by the number of
respondents making a transition from one category to another. This number is not accurately
measured, however, since a sample is obtained from a population. Therefore, the law of gravity
is used as a probabilistic model assuming a multinomial sampling scheme (which is the usual
sampling scheme for such data). The force will be modelled by the mass of the two categories
and a function of the distance between the two objects.

The remainder of this paper is organized as follows. The next section discusses Newton’s law
of gravity in more detail. Section 3 describes the analysis of change in terms of Newton’s law
of gravity and introduces dynamic elements in the law to adapt for different data settings. After
introducing the dynamic elements it will be shown that the model is a reparameterization of
the RC(M) association model (Goodman, 1979, 1991). The usual identification constraints for
this model, however, are not suited to the analysis of change. A new way of identifying the
solution will be presented and finally the model will be applied to the data in Table 1. In Section
4 the model will be generalized to the case of multiple two-way tables. The gravity models that
are developed are related to conditional association models (Clogg, 1982), but again the usual
identification constraints are not suited to the analysis of change. Section 5 treats gravitational
models for three time points. These models are related to partial association models (Clogg,
1982). Identification and an application to empirical data will be discussed. We shall conclude
with discussion and reflection about the results obtained and show some limitations of the work
presented.

2. Newton’s law of gravity

One of the major laws of the natural sciences is Newton’s law of gravity:

‘All matter attracts all other matter with a force proportional to the product of their masses and inversely
proportional to the square of the distance between them’.
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Fig. 1. Newton’s law of gravity: the masses of objects 1 and 2 are represented by the area of the circles
and d12 is the distance between the centres of the two objects

This law can be written in a formula as

Fij ∝ m.i/m.j/

d2
ij

, .1/

where Fij denotes the force between objects i and j, m.i/ and m.j/ are the masses of the objects
i and j, and d2

ij is the squared distance between the objects. A more general formulation of the
law is

Fij ∝ m.i/m.j/

g.dij/
, .2/

where g.·/ is g.x/=x2, but may also be some other function. A graphical representation is shown
in Fig. 1, where the masses are represented by the area of a circle. Newton explained a wide range
of previously unrelated phenomena by using this law: the eccentric orbits of comets, the tides
and their variations, the precession of the Earth’s axis and motion of the Moon as perturbed by
the gravity of the Sun. This work made Newton an international leader in scientific research.

In the next section we shall show that the law of gravity applies well to the analysis of social
change. Therefore, first some other definitions of the function g.·/ are provided and dynamic
elements are introduced. The most general model that results is a reparameterization of a well-
known model in statistics and social research, the RC(M) association model (Goodman, 1979,
1991). It should be noted, however, that by the time that we arrive at the RC(M) association
model many properties of real forces as they are in the natural sciences have been lost. What is
maintained is the interpretation in terms of mass and distance, and the analogy with Newton’s
law of gravity is meant more like a metaphor than reality.

3. The analysis of change

Where the task for Newton was to assess the force of the two objects on each other given
their mass and their distance, we deal with the reverse problem. We assume that each object
attracts people from other objects with some force. The resultant of these forces is flows of
people between objects. These flows can be considered measurements of the attractional forces
between objects, and thus (using the law of gravity) are the number of people going from one
object to another proportional to the mass of the first object times the mass of the second object
and inversely proportional to a function of the distance between the two objects.

In Table 1 it can be seen that there is a large number of people (57) who voted for the Social
Democrats in 1964 and for the Centre Party in 1970, so there is a large force between these
two categories. Similarly, the force between the Communists and the Conservatives is small
(the frequency equals 0). Moreover, the force of one category on another is not equal to the
reverse; for example, the force Communists–Social Democrats equals 27 and the force Social
Democrats–Communists equals 16.
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3.1. A Gaussian link
In Newton’s law of gravity the distance is defined by a three-dimensional Euclidean distance, i.e.
our universe is three dimensional. For the analysis of change the dimensionality is not known
in advance but will be denoted by P. For the data in Table 1, for example, it is likely that the
parties are differentiated on the standard ‘left–right’ dimension that is often found in political
systems. Furthermore, there might be another dimension that differentiates the five parties. In
Section 5, for example, we find a ‘rural–urban’ dimension on which the political parties differ.
Often the dimensions are interpreted after the solution has been found, on the basis of practical
knowledge of the data at hand. The co-ordinates of object i in P-dimensional space are given
by the vector z.i/ = .zi1, . . . , ziP /T. The z.i/s will, in turn, be collected in the I × P matrix
Z= .z.1/, z.2/, . . . , z.I//T. The squared Euclidean distance between objects i and j is given by

d2
ij.Z/=

P∑
p=1

.zip − zjp/2: .3/

Other distance measures might be used as well, e.g. any distance from the Minkowski family (see
Borg and Groenen (2005), chapter 17). Where in the law of gravity g.x/ = x2 we shall employ
g.x/ = exp.x2/, the Gaussian transformation or Gaussian link function (de Rooij and Heiser,
2005; Nosofsky, 1985), which is a monotone function. Again, like for the distance formulation,
other transformation functions might be used, but in Section 3.4 it will be shown that this func-
tion relates the law of gravity to a well-known model for the statistical analysis of contingency
tables.

3.2. Dynamic masses
As discussed above the measured forces are not symmetric, i.e. the force from Communist on
Social Democrats is measured to be 27, whereas the reverse force is 16. The law of gravity
assumes symmetric forces and the asymmetry is a form of ‘error’.

To deal with such asymmetries the model will be generalized in two ways. The first generaliza-
tion is to make the masses of the objects dependent on time. So, we deal with dynamic masses. It
is quite natural that masses change in the social sciences, i.e. an object might be popular at one
time point and unpopular at another. For example, in brand switching data some brands come
into fashion at one moment and go out of fashion another. When an object is popular it has
a large mass; when it is unpopular it has a small mass. For our model this means that objects
have a mass at each time point, and that mass will be denoted by mt.i/, the mass of object i at
time point t. In a graphical representation (like Fig. 1), each object would have two circles.

3.3. Dynamic positions
A second generalization is to make the positions time dependent. So, dynamic positions are
introduced into the model. An interpretation of a dynamic position is that the content of an
object has changed. For example, a political party might change its election programme after
it has lost dramatically in the last election or when a loss is in prospect, and thereby change its
relative position towards other parties. Each object has a position for each time point which is
denoted by zt.i/ = .zit1, . . . , zitP /T and the positions of all objects at time point t are gathered
in a matrix Zt = .zt.1/, zt.2/, . . . , zt.I//

T. The one-mode Euclidean distance (3) is replaced by a
two-mode Euclidean distance:

d2
ij.Z1; Z2/=

P∑
p=1

.zi1p − zj2p/2: .4/
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In the graphical representation each object is shown twice: once for each time point.

3.4. Rewriting the model
The model with dynamic masses and dynamic positions is

Fij ∝ m1.i/m2.j/

exp{d2
ij .Z1; Z2/} : .5/

This gravity model can be rewritten in a form that is well known in statistics and is often
applied in sociological studies; the RC(M) association model (Goodman, 1979, 1991). By back-
transforming the parameters of this model, estimates of the masses and co-ordinates of our grav-
ity model are obtained. Furthermore, relationships of this well-known model to other models for
contingency tables are well established, and are then also valid for our gravity model. However,
the usual graphical displays for the RC(M) association model are susceptible to misinterpreta-
tion (for examples see de Rooij and Heiser (2005)), whereas our interpretation is more intuitive.
The transformation from gravity to association model is as follows (de Rooij and Heiser, 2005):

Fij ∝ m1.i/m2.j/

exp
{

P∑
p=1

.z2
i1p + z2

j2p −2zi1pzj2p/

}

∝ m1.i/m2.j/

exp
(

P∑
p=1

z2
i1p

)
exp

(
P∑

p=1
z2

j2p

)
exp

(
P∑

p=1
−2zi1pzj2p

) : .6/

Defining α.i/=m1.i/= exp.ΣP
p=1z2

i1p/ and β.j/=m2.j/= exp.ΣP
p=1z2

j2p/, we obtain

Fij ∝ α.i/β.j/

exp
(

P∑
p=1

−2zi1pzj2p

)

∝α.i/β.j/ exp
(

P∑
p=1

2zi1pzj2p

)

∝α.i/β.j/ exp
(

P∑
p=1

φpμipνjp

)
, .7/

with zi1p = φ
1=2
p μip=

√
2 and zj2p = φ

1=2
p νjp=

√
2. The last line in expression (7) is Goodman’s

(1979, 1991) RC(M) association model. In summary, we started with (an adaptation of) New-
ton’s law of gravity, introduced dynamic elements and ended up with this well-known model.
The RC(M) association model is a reduced rank model for the association which equals the
saturated model when the dimensionality equals I − 1 and which equals the (quasi-) indepen-
dence model when the dimensionality is 0. The model with stable positions is the homogeneous
RC(M) association model and imposes a symmetry restriction on the association, and thus is a
special case of the quasi-symmetry model (Caussinus, 1965). The model with stable masses and
positions is a special case of the symmetry model.

Since our focus is on the off-diagonal entries we need parameters for the diagonal entries of
the table. These are loyalty parameters for each class, i.e. the model becomes
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Fij ∝ m1.i/m2.j/ exp.δijλi/

exp{d2
ij.Z1; Z2/} , .8/

where δij equals 1 if i = j and 0 otherwise. The λi are object-specific loyalty parameters, of
which there are I. The effect of these parameters is that the observations on the diagonal do not
influence the masses and the distances, i.e. the gravity model pertains to change. Another effect
of these parameters is that the expected frequencies equal the observed frequencies for these
cells.

3.5. Distances, distances and inner products
The RC(M) association model is often thought of as a model for ordinal data (although, strictly,
nowhere is an ordinal restriction imposed on the scale values) and the parameters μip and νjp

are often interpreted in terms of distances. This raises the question what is new about the dis-
tance interpretation in the gravity model. To answer this question we should distinguish between
within-set distances and between-set distances. In the RC(M) association model distances within
the set of row points can be interpreted such that, when μi and μi′ , with μi = .μi1, . . . , μiP /T, are
(approximately) equal, categories i and i′ have the same pattern of association to the column
categories. To interpret the relationship between the row and column sets of categories in the
RC(M) association model an inner product rule must be used, where the association equals
the product of the length of the two vectors μi and νj multiplied by the cosine of the angle
between these two vectors. The parameterization in terms of Newton’s law of gravity provides
a between-set distance interpretation, i.e. an interpretation of the distance between z1.i/ and
z2.j/.

3.6. Identification constraints
The RC(M) association model is not identified; it needs location, scaling and cross-dimensional
constraints on the row and column scores. Usually the scores are centred, the sum of squares is
set equal to 1 and the dimensions are made orthogonal. For the analysis of change, however,
these standard identification constraints prevent substantial conclusions.

Let us denote the centred row scores by z̃1.i/. It is possible to transform these centred row
scores linearly by z1.i/ = T z̃1.i/ + a for diagonal T and a vector a, and to adapt accordingly
z2.j/=T−1 z̃2.j/−a and the estimates of the masses without changing the expected frequencies.
The vector a changes the mean position of the row points on each dimension whereas the diag-
onal matrix T changes the spread of the row points on each dimension. These transformations,
however, do not change the order or relative spacings between row points; they are a dimen-
sionwise linear transformation of the row points. The centred column points are transformed by
using the inverse of this linear transformation. To obtain optimal location (a) and scalings (T)
the correlation between squared distances (d2

ij .Z1; Z2/) and F̂ ij=α̂iβ̂j is minimized. This can
be done by using the procedures that are described in de Rooij (2007).

It is important that the total mass is equal over the time points, i.e. that the total mass at the
first time point is equal to the total mass at the second time point. Therefore the identification
constraints on the masses were chosen such that this restriction is true. The mass will be rep-
resented by the area of the circle. To draw the circles we shall therefore use a radius equal to
r.i/=√{m.i/=π}.

3.7. Estimation
Several researchers have discussed estimation of the RC(M) association model (Goodman,
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Fig. 2. Graphical representation of transitions between Swedish political parties: , COM, SD, C, P, CON,
mass and positions of the parties in 1964; , sd, com, c, con, p, mass and positions of the parties in 1970

1979; Becker, 1990; Haberman, 1995). By back-transforming using equations (7) and (6) we
can obtain estimates of our model (5). The program LEM (Vermunt, 1997) will be used to fit
the models; the transformation to a distance model and the way of identifying the solution are
performed in MATLAB (Mathworks, 2006). The model with stable masses but dynamic posi-
tions cannot be written as an association model and thus cannot be estimated with available
software for association models.

3.8. Application to Swedish politics data
The data in Table 1 were analysed by using the gravity models proposed. First some benchmark
models were fitted. The quasi-independence model, the symmetry model and the quasi-symme-
try model do not fit these data (X2-values respectively 103.13, 78.03 and 22.86; G2 101.12, 83.13
and 23.37, with 11, 10 and 6 degrees of freedom df). Since the quasi-symmetry model does not fit
the data we expect that the models with stable positions do not fit either, which is indeed the case.
With one dimension X2 =28:97, G2 =27:29 and df =7 and with two dimensions the fit barely
increased: X2 =22:88, G2 =23:40 and df =4. With dynamic positions a good fit was obtained in a
single dimension, X2 =4:96, G2 =5:92 and df =4. The solution is shown in Fig. 2. We see several
positional changes there: in 1964 the positions of the five parties are as expected on the left–right
dimension, and also as described by Upton and Särlvik (1981). Ordered from left to right the
Communists, the Social Democrats, the Centre Party, the People’s Party and the Conserva-
tives.

The positional changes from 1964 to 1970 can be summarized as follows: the Communists
and Social Democrats grouped together on the left wing whereas the Conservatives and People’s
Party grouped on the right wing. Especially the Social Democrats made a big change to the left.
The Centre Party moved from the centre to a more right-wing position. It seems that some
polarization happened that distinguishes the two left-wing parties from the three other parties.
Such a grouping was also found in Upton and Särlvik (1981). Although it may seem strange
that the Social Democrats are more leftist than the Communists this has also been observed at
several points in time by Lewin et al. (1972), page 226.

Concerning the masses it can be seen that the masses of the Communists, the People’s Party
and the Social Democrats stay the same, the Centre Party is the winner and the Conservative
Party is the political party that lost mass.

4. Multiple two-way tables and multiple universes

Up to this point discussion has been confined to two-way tables. In the remainder of this paper
we shall generalize the models to three-way tables. This section treats the case of multiple
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two-way tables, e.g. transition data that are obtained in different countries, or different groups
or at different time points.

4.1. The model
In this section we shall develop models for multiple two-way tables. Each of these tables can be
modelled by the gravity models of the previous section, resulting in a universe with objects and
masses for each layer (k =1, . . . , K) of the table. The most general model is

Fijk ∝ m1k.i/m2k.j/

exp{d2
ij.Z1k; Z2k/} , .9/

where mtk.i/ is the mass of object i at time point t in layer k and the vector ztk.i/ gives the
position of object i at time point t in layer k, i.e. each layer is represented by the gravity model
of the previous section.

Restrictions can be imposed to relate the different universes. For example, the masses of
different layers or the co-ordinates of different layers can be constrained to be equal or equal
up to a scaling constant. The most natural choice is to restrict the co-ordinates (Ztk). Examples
of restrictions are

Ztk =ZtWk, .10/

Ztk =ZWk, .11/

Ztk =Zt , .12/

Ztk =Z, .13/

where Wk is a diagonal matrix, specifying positive weights that stretch or shrink the dimensions
of each layer, and Z is a matrix with co-ordinates of the points, which can be dependent on time
(Zt) or not (Z). When wppk >1, dimension p for layer k is stretched, meaning that for layer k the
objects are more differentiated on this dimension. When wppk <1 the dimension shrinks, i.e. for
layer k the objects are less differentiated on dimension p. The restriction in equation (11) defines
the well-known INDSCAL-type of three-way distance model (Carroll and Chang, 1970), with
stable positions of the categories for each layer of the table. The first restriction, equation (10),
defines a two-mode version of the INDSCAL model, i.e. an INDSCAL distance model with
dynamic positions. The third restriction, equation (12), defines two-mode distances which are
equal across the layers and the fourth restriction, equation (13), defines one-mode distances that
are equal across the layers. An example of a model with stable positions within each layer that
is stretched or shrunk in the different layers and with equal masses over the layers can be found
in de Rooij (2001).

4.2. Rewriting the model
Like the model for two-way tables this model can be written as an association model. In this case
we deal with the conditional association models as proposed by Clogg (1982) and Becker and
Clogg (1989). As in the two-way case, the link between the two types of models makes available
software for fitting our gravity models and helps in understanding relationships between our
gravity models and other models for contingency tables. The formulae for transforming one
model into the other are similar to expressions (6) and (7). For example, with the restriction in
equation (10) we have
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Fijk ∝ m1k.i/m2k.j/

exp{d2
ij.Z1; Z2; Wk/}

∝ m1k.i/m2k.j/

exp{∑
p

w2
kp.zi1p − zj2p/2}

∝ m1k.i/m2k.j/

exp
(∑

p
w2

kpz2
i1p +w2

kpz2
j2p −2w2

kpzi1pzj2p

)

∝ m1k.i/

exp
(∑

p
w2

kpz2
i1p

) m2k.j/

exp
(∑

p
w2

kpz2
j2p

) exp
(∑

p
2w2

kpzi1pzj2p

)

∝αikβjk exp
(∑

p
φkpμipνjp

)
, .14/

where the difference between zi1p and μip is a scaling factor
√

2 and φkp =w2
kp. The last line in

expression (14) is the conditional association model (Clogg, 1982; Becker and Clogg, 1989).
Model (9) represents a reduced rank association model for each two-way table. By using

restrictions (10)–(13) the co-ordinates of the different layers are functions of each other. With
restrictions (11) and (13) symmetry restrictions on the association are imposed, whereas restric-
tions (12) and (13) result in models without three-way association.

4.3. Identification
The conditional association model needs location and scaling constraints but no cross-dimen-
sional constraints (Wong (2001), page 207). Similar to the situation that was discussed in the
previous section, new locations (a) and scalings (T) are found by minimizing the correlation
between the elements eij, defined as

eij =∑
k

F̂ ijk

α̂ikβ̂jk

,

and the squared unweighted two-mode distances. The one-mode distance models ((11) and (13))
are identified.

The degrees of freedom for the conditional association models were discussed in Wong (2001),
pages 205–207. For our models these numbers should be adapted for the loyalty parameters for
the non-movers, i.e. the cell frequencies represented within parentheses in Table 2. The model
that is given in expression (9) is multiplied by the term exp.δij|kλik/ where δij|k equals 1 if i= j

and 0 otherwise. There are IK of these parameters.

4.4. Estimation
Conditional association models can be estimated with LEM (Vermunt, 1997). From the expected
frequencies we obtain an identified solution with a MATLAB procedure.

A cautionary note is in order here: when the model with constraint (10) or (11) is estimated
by using the conditional association model to obtain estimates, although not regularly encoun-
tered, negative association parameters may occur for some layer. In that case there is not a
distance representation of the conditional association model. A traditional (i.e. for the associ-
ation model) graphical display of the association must also reflect the dimension for the row
or column points for the specific layer. If such a negative association coefficient occurs it is
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Table 2. Mobility data from three countries:USA, UK and Japan†

Country Father Son

un ln um lm fa
US UN (1276) 364 274 272 17

LN 1055 (597) 394 443 31
UM 1043 587 (1045) 951 47
LM 1159 791 1323 (2046) 52
FA 666 496 1031 1632 (646)

UK UN (474) 129 87 124 11
LN 300 (218) 171 220 8
UM 438 254 (669) 703 16
LM 601 388 932 (1789) 37
FA 76 56 125 295 (191)

Japan UN (127) 101 24 30 12
LN 86 (207) 64 61 13
UM 43 73 (122) 60 13
LM 35 51 62 (66) 11
FA 109 206 184 253 (325)

†From Yamaguchi (1987): UN, upper non-manual; LN, lower non-
manual; UM, upper manual; LM, lower manual; FA, farm.

reasonable to assume that the model does not provide a good description of the association for
that specific layer.

4.5. Application
To illustrate, the gravity model will be applied to data from Yamaguchi (1987) (see also Caus-
sinus and Thelot (1976)), where occupational mobility is given for three countries: the USA,
the UK and Japan. The data are reproduced in Table 2. Each occupational mobility table has
five occupational categories: upper non-manual UN; lower non-manual LN; upper manual UM;
lower manual LM; farmer FA. Again the focus is on change and for all cells within parentheses
loyalty parameters are included in the models to be discussed.

Two benchmark models for these data are the conditional quasi-independence model and the
no-three-way interaction model. The conditional quasi-independence model of father and son
given country has X2 =1409:76 and G2 =1336:20 with df=33 and the no-three-way association
model has X2 =36:24 and G2 =36:21 with df=22. The latter model with symmetry restrictions
on the father–son association term has X2 =125:24 and G2 =106:67 with df=28 (the degrees of
freedom in the latter two models are computed by adding the number of boundary parameters
to the usual degrees of freedom). The last model shows that the assumption of a symmetric
association pattern is not tenable, i.e. a two-mode distance model will be needed.

The one-dimensional model with dynamic masses and dynamic positions constrained to be
equal for the three layers (the restriction which is defined by equation (12)) fits the data mar-
ginally (X2 = 37:75, G2 = 37:72 and df = 26), which is reasonable considering the large sample
size. The solution is shown in Fig. 3.

The major positional change is that of the farmer category, which is for the fathers at the right
but for the sons in the middle, closer to the non-manual categories. When looking at the masses
it can be seen that the USA and the UK have a similar pattern, whereas the pattern in Japan is
typically different. In the USA and the UK the non-manual classes gained mass, whereas the
lower manual and farmer classes lost mass. In the USA the upper manual class gained mass
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Fig. 3. Graphical representation of occupational mobility data from Yamaguchi (1987) ( , UN, LN, UM, LM,
FA, mass and positions of the categories for the fathers; , un, ln, fa, um, lm, mass and positions of the
categories for the sons): (a) USA; (b) UK; (c) Japan

whereas in the UK this category lost mass. In Japan the farmers lost mass whereas all other
categories gained mass.

5. Generalizations to change over three time points

5.1. The model
Above we treated models for two time points. Often, however, data are gathered at more time
points. For three time points a gravity model can be built by using triadic distance models
(de Rooij and Gower, 2003; Gower and de Rooij, 2003; de Rooij and Heiser, 2000, Heiser and
Benanni, 1997; Daws, 1996; Joly and Le Calvé, 1995; Cox et al., 1991; Pan and Harris, 1991),
models that define a distance between three points simultaneously. An extension of model (5) is

Fijk ∝ m1.i/m2.j/m3.k/

exp{d2
ijk.Z1; Z2; Z3/} : .15/
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Different forms of d2
ijk.Z1; Z2; Z3/ can be considered. de Rooij and Gower (2003) provided an

extensive description of possibilities plus the geometry of the options. A natural choice in the
current framework is to consider the generalized Euclidean model, in which case d2

ijk is defined
as

d2
ijk.Z1; Z2; Z3/=d2

ij.Z1; Z2/+d2
ik.Z1; Z3/+d2

jk.Z2; Z3/, .16/

where each dyadic distance is defined as in equation (4). The interpretation of a triadic distance
is facilitated when the isocontours are known, which are the lines with constant triadic distance
with two fixed points. The isocontours for the generalized Euclidean model are circular around
the centre of the two fixed points (de Rooij and Gower (2003), Fig. 3) just like the isocontours
for a regular Euclidean distance. The distance that is defined in equation (16) is a triadic three-
mode distance, where categories have dynamic positions as before in the two-mode distance.
The positions can be constrained to be stable; then the triadic one-mode distance is obtained,
in which case Z1 =Z2 =Z3 =Z.

5.2. Rewriting the model
Model (15) can be rewritten as a partial association model (Clogg, 1982) as follows:

Fijk ∝ m1.i/ m2.j/ m3.k/

exp{d2
ijk.Z1; Z2; Z3/}

∝ m1.i/m2.j/m3.k/

exp{d2
ij.Z1; Z2/+d2

ik.Z1; Z3/+d2
jk.Z2; Z3/}

∝ m1.i/m2.j/m3.k/

exp
(∑

p
z2

i1p + z2
j2p −2zi1pzj2p + z2

i1p + z2
k3p −2zi1pzk3p + z2

j2p + z2
k3p −2zj2pzk3p

)

∝ m1.i/m2.j/m3.k/

exp
(∑

p
2z2

i1p +2z2
j2p +2z2

k3p −2zi1pzj2p −2zi1pzk3p −2zj2pzk3p

) : .17/

Defining

α.i/=m1.i/= exp
( P∑

p=1
2z2

i1p

)
,

β.j/=m2.j/= exp
( P∑

p=1
2z2

j2p

)

and

γ.k/=m3.k/= exp
( P∑

p=1
2z2

k3p

)

we obtain

Fijk ∝α.i/β.j/γ.k/ exp
(∑

p
2zi1pzj2p +2zi1pzk3p +2zj2pzk3p

)
: .18/

The partial association model with restricted row, column or layer terms such that the row
scores are equal in the association with the columns and with the layers, and similarly for the
column scores and layer scores, is
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Fijk ∝α.i/β.j/γ.k/ exp
(∑

p
φ1pμipνjp +φ2pμipκkp +φ3pνjpκkp

)
: .19/

Model (18) can be obtained from this by defining

zi1p = apμip√
2

,

zj2p = bpνjp√
2

,

zk3p = cpκkp√
2

where ap =√
.φ1pφ2p=φ3p/, bp =φ1p=ap and cp =φ2p=ap.

Again, the link between the gravity and association model makes software available for fitting
the gravity model and provides insight into the relationships between our gravity model and
other models for contingency tables.

5.3. Identification
For the partial association models location constraints are necessary for each variable, whereas
scaling and cross-dimensional constraints are necessary for only one of the three variables
(Anderson and Vermunt (2000), page 95, and Wong (2001), page 204). In the triadic three-mode
model we can find new locations for the variable at the first time point a, for the second time point
b and for the third time point c =−.a +b/ by minimizing the correlation between F̂ ijk=α̂iβ̂j γ̂k

and the squared triadic distance d2
ijk.Z1; Z2; Z3/. The triadic one-mode model, i.e. the model

with stable positions, is identified.
As before we focus on change by including loyalty parameters in the model for the people who

made the same choice on all three occasions. In other words, the model defined in expression
(15) is multiplied by the term exp.δijkλi/, where δijk equals 1 if i= j = k, and 0 otherwise. The
λi are loyalty parameters, of which there are I.

5.4. Estimation
In LEM it is not possible to estimate the partial association models in more than two dimen-
sions. In most situations in which we want to represent a model graphically this will be enough.
However, for comparing against higher dimensional alternatives it is not satisfactory.

For the triadic one-mode distance function with stable positions (Z1 =Z2 =Z3 =Z) the asso-
ciation model should be fitted with equality restrictions on the row, column or layer scores such
that μip =νip =κip, but also a restriction on the association parameters φ1p =φ2p =φ3p.

5.5. Application
To illustrate, model (15) will be applied to data obtained from Upton (1978), page 128, where a
sample of 1651 Swedish people were asked for their votes at three consecutive elections (Table 3).
There are four political parties, the Social Democrats SD, the Centre Party C, the People’s
Party P and the Conservatives CON. Table 3 gives the measurements of forces between the four
political parties. For example, there are low forces between the Social Democrats in 1964, the
Centre Party in 1968 and the People’s Party in 1970 (the force equals 6) and between the People’s
Party in 1964, the Centre Party in 1968 and the Social Democrats in 1970 (the force equals 1).
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Table 3. Swedish voting data representing voting
changes from 1964 to 1968 to 1970

1964 1968 1970 party
party party

SD C P CON
SD SD (812) 27 16 5

C 5 20 6 0
P 2 3 4 0
CON 3 3 4 2

C SD 21 6 1 0
C 3 (216) 6 2
P 0 3 7 0
CON 0 9 0 4

P SD 15 2 8 0
C 1 37 8 0
P 1 17 (157) 4
CON 0 2 12 6

CON SD 2 0 0 1
C 0 13 1 4
P 0 3 17 1
CON 0 12 11 (126)

As in the two-way tables the force from a to b was not equal to the force from b to a; in the
three-way table the force abc is not equal to the forces acb, bac, bca, cab and cba. The focus
is on the movers, meaning that subjects who made the same choice at all three time points are
excluded from the analysis with the gravity model, by including loyalty parameters for the cells
within parentheses.

Some benchmark models are the no-three-way association model, which has X2 =27:13 and
G2 =29:00 with df=23 with a Bayesian information criterion (BIC) statistic of −141.40. With
symmetry restrictions on the association terms we obtain X2 = 47:25 and G2 = 49:49 with
df=32 with a BIC statistic of −187.60. The latter model just does not fit: p=0:04 by using the
X2-statistic. Another benchmark model is the first-order Markov model; it has X2 =427:04 and
G2 =207:33 with df=36. Its BIC statistic equals −59.39.

Application of the gravity models with stable positions (triadic one-mode distance) gives
with one dimension X2 =166:97 and G2 =180:06 with df=47 and X2 =138:16 and G2 =138:07
with df=45 with two dimensions. Using dynamic positions X2 =116:00 and G2 =131:25 with
df = 41 in the one-dimensional solution and X2 = 74:36 and G2 = 80:86 with df = 33 in the
two-dimensional solution.

Looking at BIC statistics we obtain the following. For the model with stable positions in
one dimension the BIC statistic equals −168.17, whereas in two dimensions it is −195.34. With
dynamic positions in one dimension the BIC statistic is −172.52, and in two dimensions
it is −163.64.

Fig. 4 shows the model with the lowest BIC statistic, the two-dimensional model with dynamic
masses but stable positions. This is a model with a three-way symmetric association pattern,
i.e. all asymmetry in the data is captured by the masses. We see that the People’s Party and
the Conservatives are close in space (d2 = 0:04), whereas the Social Democrats are far from
all other parties (d2 = 1:78, d2 = 1:53 and d2 = 2:06 to the Centre Party, People’s Party and
Conservatives respectively). The Centre Party is closer to the People’s Party (d2 =0:85) and the
Conservatives (d2 =0:96) than to the Social Democrats (d2 =1:78). The largest triadic distance
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Fig. 4. Graphical representation of transitions between Swedish political parties from 1964 to 1968 to 1970
(the horizontal dimension can be interpreted as the traditional left–right dimension, whereas the vertical
dimension can be interpreted as a rural–urban dimension): �, mass at 1964; , mass at 1968; , mass at
1970

is between the Social Democrats, the Centre Party and the Conservatives (d2
ijk =4:79), whereas

the smallest is between the Centre Party, the People’s Party and the Conservatives (d2
ijk =1:84).

The other two triadic distances are d2
ijk = 4:16 for the combination Social Democrats, Centre

Party and People’s Party and d2
ijk =3:63 for the combination Social Democrats, People’s Party

and Conservatives. Also triples with a recurring party have a triadic distance, which is in the
triadic one-mode distance the square root of twice the squared dyadic distance. Since these are
often smaller than the triadic distances between three different parties, the pattern is such that
more people transit between two than between three parties.

Concerning the masses we see that the Social Democrats first stay stable but then lose mass,
the Centre Party gains mass twice, the People’s Party first loses and then regains mass, and
finally the Conservatives lose mass twice.

The horizontal dimension is the traditional left–right dimension, where again the Centre
Party, the People’s Party and the Conservatives group on the right-hand side. The vertical
dimension differentiates the Centre Party from the other parties and can be understood as a
rural–urban dimension since the Centre Party used to be the Agrarian Party, attracting many
farmers and people from the small villages (Lewin et al. (1972), page 221).
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For the interpretation as a model of change consider the odds of choosing the Social Dem-
ocrats versus the Centre Party at the third time point given the People’s Party at the first and
Conservatives at the second time point. The odds are

πP,CON,SD

πP,CON,C
= m1.P/m2.CON/m3.SD/ exp.−d2

P,CON,SD/

m1.P/m2.CON/m3.C/ exp.−d2
P,CON,C/

= m3.SD/

m3.C/

exp.−d2
CON,SD/

exp.−d2
CON,C/

exp.−d2
P,SD/

exp.−d2
P,C/

:

So, the knowledge that at the first time point the choice was for the People’s Party changed the
odds by a factor exp.−d2

P,SD/=exp.−d2
P,C/=0:50.

As another example consider the odds of the People’s Party versus the Conservatives given
twice the Social Democrats:

πSD,SD,P

πSD,SD,CON
= m1.SD/m2.SD/m3.P/ exp.−d2

SD,SD,P/

m1.SD/m2.SD/m3.CON/ exp.−d2
SD,SD,CON/

= m3.P/

m3.CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

exp.−d2
SD,P/

exp.−d2
SD,CON/

= 0:14
0:05

exp.−1:53/

exp.−2:06/

exp.−1:53/

exp.−2:06/

= 0:14
0:05

0:22
0:13

0:22
0:13

=2:8×1:69×1:69

=7:98:

So, after twice choosing the Social Democrats the odds are largely in favour of the People’s
Party instead of the Conservatives, which can be judged from the larger mass of the People’s
Party and the smaller distance from the Social Democrats to the People’s Party compared with
the distance Social Democrats–Conservatives.

6. Swedish politics revisited

The two examples that were discussed dealt with votes from Sweden in the period 1964–1970
(see Sections 3.8 and 5.5). The first example included the Communists for which we have no data
in the second example. The conclusion from the first example (1964–1970) was that there have
been major changes in the positions, whereas the conclusion from the second example (1964–
1968–1970) is that the positions are unchanged. These solutions cannot really be compared,
since the first shows marginal association whereas the second shows conditional association. It
is well known that these two differ in many cases (see Agresti (2002), chapter 2).

To compare the positions further we analysed four tables: each of the two-way marginal tables
of the 1964–1968–1970 data (Table 3) and the 1964–1970 data (Table 1) but without the Com-
munists. For these 4×4 tables, the one-dimensional model with dynamic positions has 0 degrees
of freedom, i.e. it is a saturated model. To make comparisons we changed from object-specific
loyalty parameters to a single overall loyalty parameter (i.e. λ1 = λ2 = . . . = λI ), the effect of
which is that the masses and distances now also contribute to the fit of the diagonal elements
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in the data matrix. Moreover, these diagonal elements are not necessarily fitted perfectly as is
the case with object-specific loyalty parameters. With these settings the model with dynamic
positions has 3 degrees of freedom, whereas the model with stable position has 5.

For all data sets, except for the 1968–1970 data, dynamic positions are needed. For the 1968–
1970 data the model with stable positions provides an adequate fit. The results are shown in
Fig. 5. Figs 5(a)–5(c) pertain to the marginal tables that were obtained from Table 3, whereas
Fig. 5(d) pertains to the data from Table 1 but without the Communists. From Fig. 5 it can be
concluded that the positions of the parties in 1964 and 1970 are in all cases roughly the same.
Again, as in Fig. 2, the Centre Party, the People’s Party and the Conservatives seem to cluster
together over time, which is mostly due to the period 1964–1968, since this effect is visible in
both the analysis of the 1964–1968 and the 1964–1970 data. Concerning the 1968 positions in
the analysis of 1964–1968 data there is a reversal of the People’s Party and the Conservatives
at the right-hand side of the scale, which cannot be found back in the 1968–1970 data. Note

−1 0 1
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sd68 c68 p68con68
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Fig. 5. Comparison of results from four two-way tables ( , masses for 1964; , masses for 1968; , masses
for 1970): (a) 1964–1968 marginal table (obtained from the three-way table); (b) 1968–1970 marginal table
(obtained from the three-way table); (c) 1964–1970 marginal table (obtained from the three-way table);
(d) 1964–1970 result for Table 1 without the Communists
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again that this reversal is not due to the new identification constraints. The same reversal in 1968
was found by Lewin et al. (1972), page 220, and can possibly be explained by ‘the conservative
party in the sixties is our best example of a party in the throes of a crisis of identity’ (Lewin
et al. (1972), page 285), which is also apparent by their change of name from (literal translation)
‘The Right Party’ to ‘The Moderates’ (see Upton and Särlvik (1981)). When looking at the
1968–1970 data, however, this reversal of the 1968 positions is not preserved. Finally, note that
the analyses of the two data sets pertaining to changes from 1964 to 1970 give (almost) identical
results.

7. Discussion

The analysis of change was discussed in terms of Newton’s law of gravity. It was shown that a
well-known and often-applied model for the analysis of contingency tables, the RC(M) associ-
ation model, can be interpreted in terms of mass and distance, and thus has an interpretation
that is similar to the law of gravity. Both masses and positions can be stable as well as dynamic.
These dynamic elements were discussed extensively; dynamic masses relate to popularity of
objects which might change whereas dynamic positions relate to content changes of objects
(in the case of stable masses no change in content took place). The RC(M) association model
needs location and scaling constraints for identification. The usual constraints, however, are
troublesome in the analysis of change, and therefore a new way of identifying the solution was
discussed. This new way of identifying the solution makes it possible to interpret the solution
in terms of polarization, as we did in the application. However, if everything (i.e. all voters and
all parties) makes the same shift in one direction, our method will not find this shift in location
since all relative positions remain the same. An example of such a situation, as a referee pointed
out, is that as a consequence of world events (e.g. global warming) the nation becomes more
left or right wing (i.e. ‘green’). All parties will feel this shift and will adapt their stances as a
consequence. This common shift will not be noted by our gravity model. If, however, some
parties shift more than others then we will see that the relative positions change.

The new interpretation in terms of mass and distance of the RC(M) association model is
simple since both mass and distance are fairly well-understood concepts, at least better than
main effects and inner products (projection). In the examples that were shown in Section 3 (and 4)
a one-dimensional solution was obtained in which the interpretation of the graphical display
in terms of distances is much easier than the product of lengths of vectors (as in the inner prod-
uct parameterization). So, a new interpretation to a well-known model was provided, which
might be of great value, since the new interpretation has roots in the natural sciences and is well
understood by many people.

The gravity models that were proposed can be considered a generalization of the loyalty–
distance models that were proposed by Upton and Särlvik (1981). Compared with their model
our model is not dependent on an a priori ordering of the objects; our model can be used for
multidimensional solutions; and our model allows for changing positions of the objects. It can
be assumed that the solutions that are obtained with our unidimensional model with stable
positions and the loyalty–distance model of Upton and Särlvik are approximately the same.

After the case of square contingency tables we looked at the case where there are multiple
tables. Bridges between conditional association models and weighted Euclidean distances
(the INDSCAL model) were shown, but also other solutions (further or less restricted) were
discussed for such data. As for the square table case, we developed a new interpretation in
terms of mass and distance. As for the standard RC(M) association model the identification
constraints had to be adapted; we developed a manner to do so.
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The generalization to tables for three time points needed a further expansion of the law of
gravity. Distances between three points, triadic distances, were discussed and their relationship
to partial association models was shown. Again the triadic distance is easier to understand than
the sum of three inner products, as modelled in the partial association models. Although this
representation is moving away from Newton’s law of gravity, the basic ingredients are still mass
and distance. The models that were discussed can theoretically be generalized to more time
points by using tetradic (or polyadic) distances, which can be defined as sums of all (squared)
dyadic distances (as in equation (16)). However, the relationship between partial association
models and triadic distance models as shown in equations (18) and (19) does not generalize to
more time points (variables). In that case the gravity models become more restricted than the
association models.

The triadic distance models are good in showing and representing change. They lack a formal
change mechanism, however, as in for example (latent) Markov models. However, the triadic
gravity models can be conceived as second-order Markov models with restrictions, and when
interpreted by using the correct temporal ordering there is an influence of the first time point on
the second, and an influence of the first and second time points on the third. We provided some
examples of interpretation at the end of Section 5.5. For triadic three-mode distances similar
statements about conditional odds can be obtained.

The triadic gravity models are not collapsible, i.e. the change from time point 1 to 2 in triadic
distance models is different from the change that is obtained when the table was collapsed over
the third time point. A model is collapsible when the conditional association equals the marginal
association, and this is generally so for conditional independence models (Bishop et al., 1975).
For the example that was discussed in Section 5 this would be the non-fitting first-order Markov
model. A possible reason for the failure of this model is subject heterogeneity, which is due
to ignoring relevant covariates in the analysis (Agresti (2002), page 478). In other words, the
group of people who make the same change from time point 1 to 2 do not form a homogeneous
group. By using the choices that are made at the third time point we obtain more reliable change
estimates.

In this paper all models were estimated with LEM. This yielded some problems; for example,
for square tables the model with stable masses but dynamic positions cannot be fitted by using
software for association models. Furthermore, the models for observations on three time points
could not be estimated in more than two dimensions, and for the model for multiple two-way
tables sometimes a negative association coefficient occurs for a particular layer which under
a distance model is not possible. To deal with such problems special software should be writ-
ten.

We tried to build models for the whole data set. Another way of analysing square tables is
to decompose the table into a symmetric part and a skew symmetric part, and these are then
analysed separately. Often this is done by using least squares techniques. The best known of such
procedures is that due to Gower (1977) and discussed also in Constantine and Gower (1978).
Bilinear forms for skew symmetry were discussed in van der Heijden and Mooijaart (1995). For
a treatment of skew symmetry in the three-way case see de Rooij and Heiser (2000).

The use of gravity models to explain social phenomena is not new. Tobler (1976), for exam-
ple, used a social gravity model for migration data. Gravitational models are also often used in
economic and transportational studies (see, for example, Sen and Smith (1995)). In these cases,
however, the distances are often known in advance, i.e. they are real distances, or the distances
are measured by several variables. In our case, however, the distances must be estimated from
the data. The fact that Newton’s gravity model is used more often in other areas is due to its
simple and understandable nature: mass and distance are easily grasped concepts. In this paper
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these concepts are used for the analysis of change. For change from one time point to another
these models give a very natural description of the change process.
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Appendix A: Software note

We used the program LEM to obtain fitted frequencies. The scaling and locations were found by using
MATLAB. A MATLAB shield was built around LEM such that no manual copying is needed in perform-
ing the analysis. On request the MATLAB and LEM files can be obtained from the author.
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