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PROPERTIES OF IDEAL POINT CLASSIFICATION MODELS FOR BIVARIATE BINARY
DATA

Hailemichael M. Worku and Mark de Rooij

LEIDEN UNIVERSITY

The ideal point classification (IPC) model was originally proposed for analysing multinomial data in
the presence of predictors. In this paper, we studied properties of the IPC model for analysing bivariate
binary data with a specific focus on three quantities: (1) the marginal probabilities; (2) the association
structure between the two binary responses; and (3) the joint probabilities. We found that the IPC model
with a specific class point configuration represents either the marginal probabilities or the association
structure. However, the IPC model is not able to represent both quantities at the same time. We then
derived a new parametrization of the model, the bivariate IPC (BIPC) model, which is able to represent
both the marginal probabilities and the association structure. Like the standard IPC model, the results of
the BIPC model can be displayed in a biplot, from which the effects of predictors on the binary responses
and on their association can be read. We will illustrate our findings with a psychological example relating
personality traits to depression and anxiety disorders.

Key words: probabilistic multidimensional unfolding model, ideal point classification model, bivariate
binary data, marginal model, association model, odds ratio, biplot.

1. Introduction

Multiple binary outcome data are often collected in epidemiology, psychology, medicine, and
other life and behavioural sciences. For example, theNetherlandsStudyofDepression andAnxiety
(NESDA) data were collected on depression and anxiety disorders, and how these disorders
are influenced by personality traits and background variables (Pennin et al., 2008, Spinhoven,
De Rooij, Heiser, Penninx, & Smit, 2009). In this paper, we focus on bivariate binary data in
which two dichotomous response variables are observed for each subject in a study. Another
example with bivariate binary data is the British coalminers study (Ashford, Morgan, Rae, &
Sowden, 1970), which investigated data on breathlessness (1 = difficult; 0 = Normal) and
wheeze (1 = difficult; 0 = Normal) of coalminers in Britain, to study the impact of exposure on
these respiratory indicators (Ashford et al., 1970, McCullagh & Nelder, 1989, Palmgren, 1989).

Let us denote the bivariate binary responses observed from the i-th subject by Yi1 and Yi2.
The p-dimensional vector xi represents the explanatory variables without including an intercept,
where i = 1, 2, . . . , N . The cross-classified binary responses are displayed in Table 1 in which the
corresponding probabilities are also presented, i.e., the probabilities within the four cells represent
the joint probabilities; and those at the margins represent the marginal probabilities. Empirical
researchers working with bivariate binary data are often interested in the following quantities: (1)
the marginal probabilities; (2) the association between the two binary responses; and (3) the joint
(or multinomial) probabilities.

In marginal modelling, the main focus is on the analysis of the marginal probabilities sepa-
rately in which the association structure between the binary responses could be a direct interest
or treated as a nuisance parameter (Agresti, 2002, pp. 455; Molenberghs & Verbeke, 2005, pp.
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Table 1.
Cross-classification of bivariate binary data observed from i-th subject.

Yi2

1 0

Yi1 1 πi,11 πi,10 πi1.
0 πi,01 πi,00 πi0.

πi.1 πi.0 1.00

55). In the margins of Table 1, the marginal probabilities are denoted by πil· = Pr(Yi1 = l) and
πi·l = Pr(Yi2 = l), where l = 0, 1. Bahadur (1961) proposed a marginal model based on the
full likelihood for analysing bivariate binary data. The joint distribution was characterized by the
two marginal distributions and the correlation between the two binary responses. Lipsitz, Laird,
and Harrington (1990) followed the idea of Bahadur (1961) and showed that other measures of
association can also be used (e.g. the odds ratio or relative risk). For a 2×2 contingency table, the
odds ratio is calculated as τi = (πi,11×πi,00)/(πi,10×πi,01)where πi,11 = Pr(Yi1 = 1,Yi2 = 1);
πi,00 = Pr(Yi1 = 0,Yi2 = 0); πi,10 = Pr(Yi1 = 1,Yi2 = 0); and πi,01 = Pr(Yi1 = 0,Yi2 = 1).

Marginal model parameters can be fitted directly or by imposing restrictions on the joint
distribution (Molenberghs & Verbeke, 2005, pp. 49). Aitchison and Silvey (1958; 1960) origi-
nally proposed constrains on parameters in maximum likelihood function. Their approach was
later applied to categorical data by Lang and Agresti (1994), and other researchers (Lang, 1996;
Bergsma, 1997; Bergsma & Rudas, 2002; Vermunt, Rodrigo, & Ato-Garcia, 2001). McCullagh
and Nelder (1989) introduced a multivariate logistic transformation which can be used to relate
the joint distribution to the marginal probabilities and the association structure. Their approach is
widely used for marginal modelling of multivariate categorical responses (Glonek &McCullagh,
1995; Molenberghs & Lesaffre, 1994, 1999).

In recent years, the marginal modelling strategy has shifted from fitting and testing linear
constraints on parameters to inequality constraints for addressing certain scientific questions
(Colombi & Forcina, 2001; Bartolucci, Forcina, & Dardanoni, 2001; Bartolucci, Colombi, &
Forcina, 2007). For ordinal responses, for example, it may be interesting to know whether the
univariate distributions are stochastically ordered in some way, i.e., whether pairs of responses are
positively correlated, or whether the degree of positive dependence changes with certain predictor
variables (Colombi & Forcina, 2001).

The main drawback of a full likelihood-based marginal modelling approach is that it is
computationally intensive and prone to model misspecification, especially when the number of
response variables increases (Agresti, 2002, pp. 465; Molenberghs & Verbeke, 2005, pp. 151).
Liang and Zeger (1986) proposed an extension of quasi-likelihood method, called generalized
estimating equations (GEE or GEE1), that does not require full specification of the response
distribution. In GEE1, the association structure is treated as a nuisance parameter. Second-order
GEE, called GEE2, (Liang, Zeger, & Qaqish, 1992) and alternating logistic regression (ALR:
Carey, Zeger, & Diggle, 1993) are commonly used for modelling both the marginal probabilities
and the association structure.

The third quantity of interest is the joint probabilities. The joint probabilities as displayed in
Table 1 (i.e. πi,00; πi,10; πi,01; and πi,11) correspond to a multinomial response variable, denoted
by Gi , with four categories (g = 4). For simplicity, we use a single index to refer to the joint
probabilities, i.e., πi j = Pr(Gi = j). For example, the four cells in Table 1 can be represented
as: πi1 = πi,00; πi2 = πi,10; πi3 = πi,01; and πi4 = πi,11. In the NESDA study, for example,
a multinomial response variable can be defined from the two binary outcome variables. That is,
Gi = 1 if the subject has no depression or anxiety; Gi = 2 if (s)he has an anxiety disorder, but
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no depression disorder; Gi = 3 if the subject has depression disorder, but no anxiety disorder;
and Gi = 4 if there is co-morbidity. Statistical models such as the multinomial baseline category
logit (MBCL: Agresti, 2002, pp. 267) or ideal point classification (IPC: De Rooij, 2009a) can be
used to analyse multinomial response variables in the presence of predictors.

De Rooij (2009a) proposed the IPC model for analysing a multinomial response variable in
the presence of predictors. The IPC model is a probabilistic multidimensional unfolding model
and closely related to ideal point discriminant analysis (IPDA) as proposed by Takane, Bozdogan,
and Shibayama (1987). Both IPDA and IPC models are classification methods based on multi-
dimensional unfolding (MDU) (Heiser, 1981, 1987; De Leeuw, 2005). The objective of MDU
is to find distances in Euclidean space between subjects and objects that approximate a set of
proximities as good as possible. In IPC and IPDA models, the proximity is given by an indicator
matrix that corresponds to the multinomial response.

De Rooij (2009a) showed that the IPCmodel in maximum dimensionality is equivalent to the
MBCL model, i.e., if the dimensionality of the Euclidean space equals the number of categories
of the response variable minus one. TheMBCL is a natural extension of binary logistic regression
to the case of nominal categorical variables. Both the IPC and the MBCL models use the joint
probabilities to define their likelihood function. Unlike in the MBCLmodel, dimension reduction
is possible in the IPC models. Thus, less model parameters are estimated in the reduced space.
Furthermore, the results of the IPC model can be displayed using a biplot (Gower & Hand, 1996,
Gower, Lubbe, & Le Roux, 2011) which enhance interpretation of the model.

In this paper, our main aim is to study properties of the IPC model for bivariate binary data,
specifically about the representation of the marginal probabilities and of the association structure.
Wewill show that the IPCmodel either represents the marginal models or the association structure
well. Next, we study a new parametrization of the IPC model, namely the bivariate IPC (BIPC)
model, in which both the marginal probabilities and the association structure are represented.
This newmodel builds forward on the work of Bahadur (1961) and Lipsitz, Laird, and Harrington
(1990). Compared to this existingmethodology for jointly modelling the marginal and association
structure, our method has the advantage of dimension reduction and a graphical representation of
the model using a biplot.

The paper is organized as follows. Section 2 presents the theoretical background. Section 3
studies properties of the IPC models both mathematically and with a simulation study. Section 4
proposes the BIPC model. Section 5 shows an example application, and then we conclude in
Section 6 with a discussion.

2. Background

2.1. The Ideal Point Classification Model

In the IPCmodel (DeRooij, 2009a), the conditional joint probabilities, i.e.,π j (xi ) = Pr(Gi =
j |xi ), are modelled using a distance between two points in an Euclidean space of dimensionality
M : one point representing subject i with coordinates ηi = [ηi1, . . . , ηiM ]T, and the other repre-
senting class j with coordinates γ j = [γ j1, . . . , γ jM ]T. The smaller the relative distance between
the two points, the larger the probability that the subject belongs to that class. The IPC model is
defined as (De Rooij, 2009a),

π j (xi ) = exp(−0.5 × δi j )
∑

h exp(−0.5 × δih)
, (1)
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where δi j is a squared Euclidean distance between the two points and is defined as

δi j =
M∑

m=1

(ηim − γ jm)2. (2)

The coordinates of the subject points are assumed to be a linear combination of the predictor
variables xi and an intercept, i.e., ηi = β0+xiβ, where β is a (p × M) matrix with regression
weights and, β0 an M-dimensional intercept. The parameters of this model are the regression
weights and the class points.

Parameter estimates in the IPC model can be obtained by maximizing a multinomial log-
likelihood function

N∑

i=1

⎡

⎣log

⎛

⎝
∏

j

π j (xi ) fi j

⎞

⎠

⎤

⎦ , (3)

where fi j = 1 if subject i is in category j , zero otherwise.
The IPC model has translation, rotational freedom, and multinomial indeterminacy (i.e. the

class probability remains the same if a constant is added to each subject’s squared distance). The
total number of indeterminacies is max[M(M − 1)/2, M(M + 1) − (g − 1)], and thus the total
number of free parameters becomes npar = (p+g)M−max[M(M−1)/2, M(M+1)−(g−1)]
(De Rooij, 2009a). For a multinomial response variable with g = 4 categories, for example, the
maximum dimensionality of the IPCmodel isM = 3(= g−1) and the total number of parameters
in that case will be npar = 3 × (p + 1) that corresponds to the regression parameters only since
the class points can be set to fixed values that span the 3-dimensional space. The class point
coordinates can be specified, for example, as

γ =

⎡

⎢
⎢
⎣

0 0 0
1 0 0
0 1 0
1 1 1

⎤

⎥
⎥
⎦ . (4)

The rows in (4) correspond to the response categories and the columns to the dimensions. In this
case, the IPC model is equivalent to the MBCL model. The advantage of the IPC model over
the MBCL model is that it provides the possibility of dimension reduction. For the multinomial
response with g = 4, a 2-dimensional IPC model can be fitted with a total number of parameters
npar = 2 × (p + 1) + 3, where the first part (2 × (p + 1)) represents the number of regression
coefficients and the second part (+3) the free class coordinates. From the eight class coordinates
five, need to be fixed for identification. This can be accomplished, for example, by defining

γ =

⎡

⎢
⎢
⎣

0 0
1 0
0 γ32

γ41 γ42

⎤

⎥
⎥
⎦ , (5)

where γ32, γ41, and γ42 are the free class coordinates, i.e., these can be estimated from the data.

2.2. The 2-Step Approach of McCullagh and Nelder (1989)

We revisit a 2-step approach often used for constructing multivariate regression models using
joint probabilities of multivariate (or bivariate) binary data, as proposed byMcCullagh and Nelder
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(1989). We later apply this approach in the distance framework to study the properties of IPC
models.

In the first step, a linear transformation is applied on the joint probabilities to obtain the
marginal probabilities, i.e.,

�i = Lπ i , (6)

whereL is a matrix of zeros and ones and π i = [πi4 πi3 πi2 πi1]T. In the case of bivariate binary
data, for example, the row margin is given by

�i1 = L1π i

=
[
1 0 1 0
0 1 0 1

]

× [πi4 πi3 πi2 πi1]T

=
[
πi4 + πi2
πi3 + πi1

]

=
[
πi1·
πi0·

]

.

(7)

Similarly, the column margin is given by

�i2 = L2π i

=
[
1 1 0 0
0 0 1 1

]

× [πi4 πi3 πi2 πi1]T

=
[
πi4 + πi3
πi2 + πi1

]

=
[
πi·1
πi·0

]

.

(8)

In the second step, logarithmic contrasts of interest are formulated, i.e.,

� i = CT log[�i ], (9)

for an appropriately chosen contrast matrixCT. For the bivariate binary data, the contrast matrices
can be chosen to be CT = [

1 −1
]
. Thus,

ψi1 = [
1 −1

]
log[�i1]

= [
1 −1

] [
log(πi1·) log(πi0·)]T

= log(πi1·) − log(πi0·)
= log(πi1·/πi0·)
= logit(πi1·).

(10)

Similarly, ψi2 = log(πi·1/πi·0) = logit(πi·1). In the presence of predictors, these logits can be
linked to the systematic part as used in generalized linear models (Agresti, 2002), that is,

logit(πi1·) = β01 + βT
1xi ,

logit(πi·1) = β02 + βT
2xi .

(11)

The above derivations (equation 6–11) can be summarized as follows.

CT log(L1πi ) = β01 + βT
1xi ,

CT log(L2πi ) = β02 + βT
2xi .

(12)
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To obtain the association structure for bivariate binary data, the joint probabilities can also
be transformed linearly. In this case CT = [

1 −1 −1 1
]
and L = I such that,

CT log(Lπi ) = [
1 −1 −1 1

]
log[Iπ i ]

= [
1 −1 −1 1

] [
log(πi4) log(πi3) log(πi2) log(πi1)

]T

= log(πi4) − log(πi3) − log(πi2) + log(πi1)

= log

[
πi4 × πi1

πi3 × πi2

]

= log(τi ).

(13)

This odds ratio can be linked to predictors as

log(τi ) = β03 + βT
3xi . (14)

3. Study-1: IPC Model as a Marginal Model

In this section, our aim is in how the IPCmodel represents both the marginal probabilities and
the association structure for bivariate binary data. We use the 2-step approach of McCullagh and
Nelder (1989) within the distance framework to transform the joint probabilities into the marginal
probabilities and the association structure.

3.1. The 2-Dimensional IPC Model

In this section, we show the representation of both the marginal probabilities and the asso-
ciation structure by a 2-dimensional IPC model. The class point matrix introduced in equation
(5) will be used here with an additional restriction imposed on one of the free class points. That
is, γ32 = 1 so that the first dimension pertains to a logistic regression of the first response and
the second dimension to a logistic regression of the second response (i.e. no further scaling is
required).

3.1.1. Representation of the Marginal Probabilities Let us first show how the marginal prob-
abilities of the two binary responses are represented by the 2-dimensional IPC model. The joint
probability as defined by the IPC model in equation (1) will be used to define the marginal
probabilities, that is,

log

[
πi1·
πi0·

]

= log

[
πi4 + πi2

πi3 + πi1

]

= log

⎡

⎢
⎢
⎢
⎣

exp(−0.5δi4)
∑

h exp(−0.5δih)
+ exp(−0.5δi2)

∑
h exp(−0.5δih)

exp(−0.5δi3)
∑

h exp(−0.5δih)
+ exp(−0.5δi1)

∑
h exp(−0.5δih)

⎤

⎥
⎥
⎥
⎦

= log

[
exp(−0.5δi4) + exp(−0.5δi2)

exp(−0.5δi3) + exp(−0.5δi1)

]

.

(15)
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Let us write out the Euclidean distances δi j as defined in equation (2). The marginal model (15)
becomes,

log

[
πi1·
πi0·

]

= log

[
exp

[
γ41(ηi1 − 0.5γ41)

] × exp
[
γ42(ηi2 − 0.5γ42)

] + exp[ηi1 − 0.5]
exp(ηi2 − 0.5) + 1

]

. (16)

In this paper, we find it convenient to re-parametrize γ41 and γ42 in terms of two other parameters,
i.e., γ41 = 1+φ1 and γ42 = 1+φ2. The φ-parameters represent the deviation of the last category
from (1, 1). By setting φ1 = φ2 = 0, , the above result (16) can be simplified to:

logit[πi1·] = log

[
[exp(ηi1 − 0.5) × exp(ηi2 − 0.5)] + exp(ηi1 − 0.5)

exp(ηi2 − 0.5) + 1

]

= log

[
exp(ηi1 − 0.5) × [

exp(ηi2 − 0.5) + 1
]

exp(ηi2 − 0.5) + 1

]

= ηi1 − 0.5

= (β01 − 0.5) + βT
1xi

= β∗
01 + βT

1xi .

(17)

Similarly,

log

[
πi·1
πi·0

]

= log

[
πi4 + πi3

πi2 + πi1

]

= log

⎡

⎢
⎢
⎢
⎣

exp(−0.5δi4)
∑

h exp(−0.5δih)
+ exp(−0.5δi3)

∑
h exp(−0.5δih)

exp(−0.5δi2)
∑

h exp(−0.5δih)
+ exp(−0.5δi1)

∑
h exp(−0.5δih)

⎤

⎥
⎥
⎥
⎦

= log

[
exp[γ41(ηi1 − 0.5γ41)] × exp[γ42(ηi2 − 0.5γ42)] + exp[ηi2 − 0.5]

exp[ηi1 − 0.5] + 1

]

.

(18)

By setting φ1 = φ2 = 0, a straightforward marginal model is obtained, logit[πi·1] = (β02 −
0.5) + βT

2xi = β∗
02 + βT

2xi , and thus, we call this the fixed class case. Without the constraints on
the φ-parameters, the marginal models in (16) and (18) can not be simplified further.

3.1.2. Representation of the Association The odds ratio is defined in terms of the joint proba-
bilities as shown in (13). Let us rewrite the probabilities in terms of the IPC model as in equation
(1), that is,

log(τi ) = log

[
πi4 × πi1

πi2 × πi3

]

= log

⎡

⎢
⎢
⎢
⎣

exp(−0.5δi4)
∑

h exp(−0.5δih)
× exp(−0.5δi1)

∑
h exp(−0.5δih)

exp(−0.5δi2)
∑

h exp(−0.5δih)
× exp(−0.5δi3)

∑
h exp(−0.5δih)

⎤

⎥
⎥
⎥
⎦
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= log

[
exp(−0.5δi4) × exp(−0.5δi1)

exp(−0.5δi2) × exp(−0.5δi3)

]

= 0.5 × [δi2 + δi3 − δi4 − δi1]. (19)

This result implies that the differences between pairs of squared Euclidean distances correspond
to the log-odds ratio. The distances can be written out and the association model becomes,

log(τi ) = φ1 × (ηi1 − 1) + φ2 × (ηi2 − 1) − 0.5 ∗ (φ2
1 + φ2

2). (20)

In the case of φ1 = φ2 = 0, log(τi ) = 0 which is equal to τi = 1. An odds ratio of unity indicates
no association between the two binary responses, i.e., independence.

3.2. The 3-Dimensional IPC Model

We now show the representation of the marginal probabilities and the association structure
in a 3-dimensional IPC model. The class point introduced in equation (4) will be used in the next
derivations of the 3-dimensional IPC model.

3.2.1. Representation of the Marginal Probabilities We follow the same derivation as before,
but now the joint probabilities are defined in the 3-dimensional Euclidean space. For the marginal
probabilities, we have

log

[
πi1·
πi0·

]

= log

[
πi4 + πi2

πi3 + πi1

]

= log

⎡

⎢
⎢
⎢
⎣

exp(−0.5 × δi4)
∑

h exp(−0.5 × δih)
+ exp(−0.5 × δi2)

∑
h exp(−0.5 × δih)

exp(−0.5 × δi3)
∑

h exp(−0.5 × δih)
+ exp(−0.5 × δi1)

∑
h exp(−0.5 × δih)

⎤

⎥
⎥
⎥
⎦

= log

[
exp [ηi1 + ηi2 + ηi3 − (3/2)] + exp [ηi1 − 0.5]

exp [ηi2 − 0.5] + 1

]

. (21)

Similarly,

log

[
πi·1
πi·0

]

= log

[
πi4 + πi3

πi2 + πi1

]

= log

⎡

⎢
⎢
⎢
⎣

exp(−0.5 × δi4)
∑

h exp(−0.5 × δih)
+ exp(−0.5 × δi3)

∑
h exp(−0.5 × δih)

exp(−0.5 × δi2)
∑

h exp(−0.5 × δih)
+ exp(−0.5 × δi1)

∑
h exp(−0.5 × δih)

⎤

⎥
⎥
⎥
⎦

= log

[
exp [ηi1 + ηi2 + ηi3 − (3/2)] + exp [ηi2 − 0.5]

exp [ηi1 − 0.5] + 1

]

. (22)

It is not possible to simplify the above formulas further because of the parameters ηi3. Compared to
the2-dimensional IPCmodelwithfixed class point, themarginalmodels are not clearly represented
in the 3-dimensional IPC models.
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3.2.2. Representation of the Association Using the formula derived in equation (19), but with
the distances defined in three dimensions, the association model becomes

log[τi ] = 0.5 × [δi2 + δi3 − δi4 − δi1]

= 0.5 ×
{[

3∑

m=1

(η2im − 2ηi1 + 1)

]

+
[

3∑

m=1

(η2im − 2ηi2 + 1)

]

−
[

3∑

m=1

(η2im − 2ηi1 − 2ηi2 − 2ηi3 + 3)

]

−
[

3∑

m=1

η2im

]}

= ηi3 − 0.5. (23)

This result proves that the 3-dimensional IPC model represents the association structure where
the third dimension uniquely pertains to the association model.

3.3. Discussion

We studied both 2- and 3-dimensional IPC models in terms of marginal probabilities and
association structure of bivariate binary data in the presence of predictors. We showed that both
models with a specific class point specification are able to recover either themarginal probabilities
or the association structure. That is, the 2-dimensional IPC model with fixed class point, i.e.,
φ1 = φ2 = 0, is equivalent to the marginal model with an independence association structure. In
the case of a 3-dimensional model, the association structure is represented by the third dimension.

Based on the results of Section 3.1.1 and 3.1.2, we showed that a 2-dimensional IPC model
with fixed class points, i.e., γ41 = γ42 = 1, represents a marginal model with an independence
association structure. Each of the dimensions in the IPC model is related to one of the two binary
responses. As shown in equation (20), the 2-dimensional IPC model with free φ-parameters
represents the association structure by amixture of the marginal parameters and the φ-parameters.

According to the analytical results shown in equations (16) and (18), the marginal models
cannot be further simplified unless φ1 = φ2 = 0. When φ1 �= 0 and φ2 �= 0, neither the marginal
model nor the association structure is well represented. At this stage, however, we do not know
whether the IPC model is capable of recovering the models for the marginal probabilities and the
association structure; therefore, we conducted a simulation study.

3.4. Simulation Study

We were able to show mathematically the performance of both the 2-dimensional IPC model
with fixed class point, denoted by IPC(2D-FIXED), and the 3-dimensional IPCmodel, denoted
by IPC(3D), in representing the marginal probabilities and the association structure for bivariate
binary data. The analytical derivation under the 2-dimensional IPC model with free class points,
denoted by IPC(2D-FREE), however, was cumbersome. We conducted a simulation study to
fully understand to what degree the IPC(2D-FREE) model recovers the marginal models and/
or the association model.

3.4.1. Data-Generating Model Bivariate binary data were generated from a bivariate logistic
regression model (Palmgren, 1989). The data-generating model for the marginal probabilities is
defined as follows,

logit[πi1·] = β01 + β11X1i + β21X2i + β31X3i + β41X4i + β51X5i ,

logit[πi·1] = β02 + β12X1i + β22X2i + β32X3i + β42X4i + β52X5i .
(24)
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We set (β01, β02) = (−2.20,−1.50); (β11, β12) = (0.00,−0.25); (β21, β22) = (0.20, 0.00);
(β31, β32) = (−0.15,−0.15); (β41, β42) = (1.05, 1.15); and (β51, β52) = (−0.45,−0.15).

To generate data, we need a representation of the association structure, i.e., log[τi ] = β03 +
β13X1i + β23X2i + β33X3i + β43X4i + β53X5i . In the 2-dimensional IPC model, the association
structure is defined in terms of the other parameters as shown in (20). That is, β*03 = φ1 × β01 +
φ2 ×β02 −0.5×φ2

1 −0.5×φ2
2 −φ1 −φ2 and β*k3 = φ1 ×βk1 +φ2 ×βk2, where k = 1, 2, . . . , 5.

Therefore, the data-generating model for the association is log[τi ] = β∗
03 + β∗

13X1i + β∗
23X2i +

β∗
33X3i +β∗

43X4i +β∗
53X5i . We set φ1 = −0.20 and φ2 = −0.45; thus, the association parameters

become β∗
03 = 1.65 and β∗

k3 = (0.10,−0.05, 0.10,−0.70, 0.15).
Four of the predictors were generated from the standard normal distribution, Xqi ∼ N (0, 1)

where q = 2, . . . , 5, and one from a binomial distribution, i.e., X1i ∼ BIN(0.67). The VGAM
package in the R software was used for generating the bivariate binary data (Yee, 2010).

3.4.2. Design and Analysis A sample size of N = 500 was used in the simulations, and
each simulation was replicated R = 1000 times to obtain the sampling distributions of model
parameters.

The performance of the proposed methods was evaluated by bias (B), root-mean-squared
error (RMSE), and coverage. The bias of a parameter is defined as the difference between true

value and the average of estimated values, i.e., B(β̂) = ¯̂
β − β, with

¯̂
β =

1000∑

r=1

β̂r/1000,

and β̂r is the estimate obtained from r−th replication. The RMSE is defined as

RMSE =
√
√
√
√

1000∑

r=1

[
(β̂r − β)2/1000

]
.

Finally, the coverage is defined as the proportion of times the 100(1 − α)% confidence interval
(CI) includes the true β value, where α corresponds to the nominal level of significance. The CI
is defined as [β̂r ± Z1−α/2ŜE(β̂r )] in which SE stands for the standard error of a parameter.

3.4.3. Simulation StudyResults The simulation results of the 2- and 3-dimensional IPCmodels
are summarized in Table 2. The results for IPC(2D-FIXED) are given in columns 4–6, for
IPC(3D) in columns 7–9, and for IPC(2D-FREE) in the last three columns. Because we
showed analytically that the marginal models are represented well by the 2-dimensional fixed
IPC model, and the association structure is represented well by the 3-dimensional IPC model, we
focus here on the contrast of the 2-dimensional free model with the other two.

Compared to theIPC(2D-FIXED) results,marginal parameters under theIPC(2D-FREE)
model were more biased. Specifically, two of the effects (i.e. X2 and X4) including the intercept
were poorly estimated. More specifically, B(β21) = 0.037 is about nine times bigger compared
to the IPC(2D-FIXED) result, B(β22) = −0.016, B(β41) = 0.106, and B(β42) = 0.050
which all are about three times bigger than those obtained from the IPC(2D-FIXED). All
the RMSE results for the IPC(2D-FREE) model were higher than those obtained from the
IPC(2D-FIXED) model. The coverage of the marginal parameters by the IPC(2D-FREE)
model, compared to the former results, seems promising. However, both the intercepts and some
of the effects were not covered well (i.e. β01: 85.2%; β02: 91.0%; β21: 92.5%; β41: 92.6%%; β52:
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Table 2.
Summarized results of the simulation study for studying the performance of the IPC model for analysing bivariate binary
data.

Effect Parameter True IPC (2D-FIXED) IPC (3D) IPC(2D-FREE)*

Bias RMSE Coverage Bias RMSE Coverage Bias RMSE Coverage

Intercept β01 −2.20 −0.083 0.337 96.3 −0.487 0.652 88.3 −0.461 0.617 85.2
β02 −1.50 −0.044 0.260 94.8 −0.236 0.368 91.5 −0.236 0.362 91.0
β03 1.65 – – – −0.045 0.786 94.4 0.020 0.586 94.8

X1 β11 0.00 0.018 0.373 94.4 0.079 0.486 95.9 0.040 0.456 94.9
β12 −0.25 −0.008 0.287 96.0 −0.024 0.335 95.7 −0.020 0.323 95.2
β13 0.10 – – – −0.076 0.717 96.2 −0.031 0.411 98.9

X2 β21 0.20 0.004 0.174 93.0 0.031 0.228 94.2 0.037 0.215 92.5
β22 0.00 −0.006 0.144 93.9 −0.026 0.163 95.9 −0.016 0.158 94.8
β23 −0.05 – – – 0.001 0.372 93.0 −0.035 0.238 95.8

X3 β31 −0.15 −0.009 0.167 95.2 −0.011 0.206 95.5 −0.015 0.195 95.5
β32 −0.15 −0.005 0.136 96.3 −0.004 0.160 96.1 −0.009 0.151 95.9
β33 0.10 – – – −0.027 0.341 96.6 −0.007 0.172 98.9

X4 β41 1.05 0.033 0.198 94.7 0.065 0.255 95.1 0.106 0.270 92.6
β42 1.15 0.019 0.178 94.6 0.034 0.207 94.2 0.050 0.201 95.4
β43 −0.70 – – – 0.083 0.430 93.0 −0.023 0.308 95.6

X5 β51 −0.45 −0.001 0.163 96.4 −0.032 0.212 96.0 −0.040 0.205 95.9
β52 −0.15 −0.004 0.149 93.5 0.033 0.175 92.9 0.012 0.173 91.9
β53 0.15 – – – −0.034 0.352 95.8 0.035 0.240 96.9

IPC(2D-FIXED) corresponds to the 2-dimensional IPC model with fixed class points, i.e., φ1 = φ2 = 0;
IPC(3D) to the 3-dimensional IPC model; and IPC(2D-FREE) to the 2-dimensional IPC model with
free class points.
β*03 = φ1 × β01 + φ2 × β02 − 0.5 × φ2

1 − 0.5 × φ2
2 − φ1 − φ2; β*k3 = φ1 × βk1 + φ2 × βk2, where

k = 1, 2, . . . , 5.

91.9%). Unlike the marginal parameters, the association parameters were fairly well estimated
by the IPC(2D-FREE). This is evident if we compare the results of the association parameters
under the IPC(2D-FREE) and the IPC(3D) models.

3.5. Summary of Study-1

De Rooij (2009a) studied IPC model for categorical data and showed its equivalence to
logistic regression models. It was shown that the MBCL model is equivalent to the IPC model in
maximum dimensionality. These models represent the joint probabilities.

In this section, we studied properties of the IPC model for analysing bivariate binary data,
focusing on the marginal probabilities and the association structure. We showed their connection
both mathematically and using a simulation study. We found that a 2-dimensional IPC model
with fixed class point (i.e. φ1 = φ2 = 0) represents the marginal models with an independence
association structure. We also found that a 3-dimensional IPC model with a specific class point
configuration represents the association model in the third dimension.

We also studied the performance of a 2-dimensional IPC model with free class point. Since
its analytical part was cumbersome, we conducted a simulation study to see whether it can recover
both the marginal models and the association model. This model represents the association model
well, but the marginal models were misspecified. Therefore, we conclude that a given IPC model
can recover either the marginal models or the association model of bivariate binary data, but not
both of them at the same time.
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4. Study-2: The Bivariate IPC Model

In the first study, we investigated properties of the standard IPCmodels for the representation
of both the marginal probabilities and the association structure. It was concluded that a given
IPC model is not able to represent both types of the models at the same time. In this section,
we re-parametrize the IPC model in order to provide a better representation of both the marginal
probabilities and the association structure.

Bahadur (1961) proposed a full likelihood-based marginal model for bivariate binary data by
characterizing the multinomial probabilities in terms of both the marginal probabilities and the
correlation coefficient between the two responses (Yi1 and Yi2). Lipsitz, Laird, and Harrington
(1990) followed the Bahadur (1961) approach and showed that other measures of association,
such as the odds ratio and the relative risk, can also be used.

In this second study, our aim is to adopt the Lipsitz, Laird, and Harrington (1990) approach
into the IPC model framework for better representation of the required statistical models. As
shown in equation (3), parameter estimation under the IPC model is based on the multinomial
likelihood function. To avoid confusion with the former IPC model presented in Section 2.1, we
refer the Bahadur-based IPC model as the bivariate IPC (BIPC) model.

In the BIPC model framework, the Euclidean distance defined in equation (2) will be used
only to define the joint probabilities which are related to the association structure. For defining the
marginal models, we use another Euclidean distance definition emphasizing the marginal models.
That is,

πi1· = exp(−0.5δi1·)
exp(−0.5δi0·) + exp(−0.5δi1·);

πi·1 = exp(−0.5δi·1)
exp(−0.5δi·0) + exp(−0.5δi·0),

(25)

where δil· = ∑2
m=1 (ηim − γl·m)2 and δi·l = ∑2

m=1 (ηim − γ·lm)2, l = 0, 1. As shown in
“Appendix”, the class points of the BIPC model are defined as

γ1 =
[
0 0
1 0

]

,

and

γ2 =
[
0 0
0 1

]

,

where γ1 is the class point matrix that corresponds to the first response variable and γ2 to the
second response variable.

The first step according to Bahadur (1961) is to rewrite the association structure between the
two binary responses, i.e., the odds ratio in our case, using the marginal probabilities. That is,

τi = πi4 × πi1

πi2 × πi3
= πi4 × (1 − πi1· − πi·1 + πi4)

(πi1· − πi4) × (πi·1 − πi4)
. (26)

We showed in (19) that given the IPC model, the odds ratio can be defined in terms of
Euclidean distances, i.e., τi = exp[0.5× (δi2 + δi3 − δi1 − δi4)]. We will use this representation
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as the defining characteristics of the association in the BIPC model. With free class points, i.e.,
φ1 �= 0 and φ1 �= 0, the odds ratio becomes,

τi = exp[φ1 × (ηi1 − 0.5φ1 − 1) + φ2 × (ηi2 − 0.5φ2 − 1)]. (27)

We can then replace τi in (26) by (27) and solve the quadratic equation to get solutions for πi4
(Mardia, 1967). The valid solution for πi4 is,

πi4 =
⎧
⎨

⎩

wi − {w2
i − 4 exp(ai )[exp(ai ) − 1]πi1·πi·1}1/2

2[exp(ai ) − 1] if ai �= 0

πi1· × πi·1 if ai = 0,
(28)

wherewi = 1−[1−exp(ai )][πi1·+πi·1] and ai = φ1×(ηi1−0.5φ1−1)+φ2×(ηi2−0.5φ2−1).
The final step is to rewrite the joint probabilities in the multinomial likelihood in terms of the

marginal probabilities and the association structure, i.e., πi2 = πi1· − πi4 and πi3 = πi·1 − πi4
in which πi4 will be replaced by (28). That is,

π∗
i =

⎡

⎣
πi4

πi·1 − πi4
πi1· − πi4

⎤

⎦ . (29)

This modified likelihood will be used for estimating the parameters of the BIPC model.

4.1. Simulation Study Results

The simulation results of the BIPC model are summarized in Table 3. We compare these
results against those in Table 2, particularly the results from IPC(2D-FIXED) and IPC(3D)
models.

The bias and RMSE results for the marginal parameters under the BIPC model are very close
to those under the IPC(2D-FIXED) model, which proves that the BIPC model represents the
marginal models well. Almost all the coverages of the marginal parameters were satisfactory,
except two of the effects, one for β22 equal to 92.8% and for β52 equal to 92.2%. Their coverage
by the IPC(2D-FIXED) model was 93.9% and 93.5%, respectively.

Compared to the results presented in Table 2 for IPC(3D), theBIPCmodel produced smaller
bias, except for two of the effects, i.e., B(β43) = −0.176 and B(β53) = 0.087. However, all the
RMSEs under the BIPC model were smaller than those obtained from the IPC models. Almost all
the parameters were covered well by the BIPC model, with a coverage above 95.0%. Compared
to the IPC models, the BIPC model estimates are generally less biased, more accurate, and well
covered parameters for both the marginal models and the association model.

We conclude that the BIPC model represents not only the marginal models, but also the
association model for the analysis of bivariate binary data in the presence of predictors.

5. Application

The NESDA data introduced earlier (Penninx et al., 2008) were analysed using the proposed
distance models. The sample comprised of N = 2, 938 subjects aged 18 to 65 years (Mean = 42;
S.D.=13.1). About 66.5% were female and the average number of years of education attained
was 12.2 with S.D. = 3.3. The responses of interest were diagnoses of dysthymia (DYST: 1
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Table 3.
Summarized results of the simulation study for studying the performance of the BIPCmodel for analysing bivariate binary
data.

Effect Parameter True Bias RMSE Coverage

Intercept β01 −2.20 −0.074 0.333 95.5
β02 −1.50 −0.048 0.262 94.9

β*03 1.65 0.109 0.602 94.5
X1 β11 0.00 0.021 0.365 94.3

β12 −0.25 0.001 0.288 95.4

β*13 0.10 −0.022 0.369 98.7
X2 β21 0.20 0.005 0.171 94.2

β22 0.00 −0.010 0.144 92.8

β*23 −0.05 −0.044 0.230 95.1
X3 β31 −0.15 −0.007 0.162 95.2

β32 −0.15 0.004 0.137 96.1

β*33 0.10 0.013 0.158 99.3
X4 β41 1.05 0.022 0.195 94.5

β42 1.15 0.009 0.179 93.1

β*43 −0.70 −0.176 0.382 95.7
X5 β51 −0.45 0.007 0.162 96.5

β52 −0.15 0.001 0.149 92.2

β*53 0.15 0.087 0.249 96.8

β*03 = φ1 × β01 + φ2 × β02 − 0.5 × φ2
1 − 0.5 × φ2

2 − φ1 − φ2; β*k3 = φ1 × βk1 + φ2 × βk2, where
k = 1, 2, . . . , 5.

if diseased; 0, otherwise) and generalized anxiety disorder (GAD: 1 if diseased; 0, otherwise).
About 10.2% and 15.3% of the subjects in the study developed DYST and GAD, respectively.

One of the objectives of NESDA is to measure the effect of personality traits on the risk of
developing mental disorders (Spinhoven et al., 2009). We considered the Big-Five personality
variables, i.e., neuroticism (N), extraversion (E), openness to experience (O), agreeableness (A),
and conscientiousness (C). We also took into account the background variables, i.e., age (AGE),
years of educations attained (EDU), and gender (GEN: 1=female; 0=male). Both the personality
traits and the background variables will be treated as predictors.

In the final fitted (B)IPC models, all background variables and two of the personality traits
such as neuroticism and extraversion are retained since the other traits (such as O, A, and C) are
not statistically significant on both dimensions.

5.1. The IPC Models

The results of 2- and 3-dimensional IPC models fitted on the NESDA data are shown in
Table 4.

5.1.1. The 2-dimensional IPC Model The 2-dimensional IPC model with fixed class points,
which is a marginal model with an independence association structure, is presented in the third
column of Table 4 and has a fit statistic of BIC = 3784.1 with twelve parameters.

We found a strong positive effect of neuroticism on risk of developing both mental disorders,
i.e., β̂41 = 1.03 with DYST; and β̂42 = 1.16 with GAD. This implies that on average neurotic
(i.e. emotionally unstable) people have a higher chance of developing the mental disorders. The
other personality trait with stronger effect was extraversion with a moderate negative effect, i.e.,
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Table 4.
Parameter estimates with corresponding standard errors (between the parenthesis) obtained from the IPC and BIPCmodels
fitted on the NESDA data.

Effect Parameter Models

IPC(2D-FIXED) IPC(2D-FREE)a IPC(3D) BIPCa

Dysthymia
Intercept β01 −2.20(0.131) −2.57(0.148) −2.55(0.167) −2.21(0.131)
Gender β11 −0.18(0.140) −0.21(0.143) −0.25(0.180) −0.17(0.139)
Age β21 0.20(0.072)* 0.20(0.073)* 0.18(0.093)* 0.20(0.072)*
Education β31 −0.15(0.066)* −0.17(0.067)* −0.18(0.085)* −0.15(0.065)*
Neuroticism β41 1.03(0.102)* 1.14(0.127)* 1.13(0.133)* 1.03(0.102)*
Extraversion β51 −0.46(0.085)* −0.47(0.087)* −0.47(0.11)* −0.45(0.085)*
Generalized anxiety disorder
Intercept β02 −1.51(0.105) −1.69(0.118) −1.69(0.118) −1.51(0.103)
Gender β12 −0.26(0.119)* −0.31(0.136)* −0.31(0.137)* −0.26(0.117)*
Age β22 0.06(0.060) 0.03(0.068) 0.02(0.069) 0.05(0.059)
Education β32 −0.13(0.056)* −0.14(0.064)* −0.14(0.065)* −0.12(0.055)*
Neuroticism β42 1.16(0.086)* 1.22(0.098)* 1.22(0.098)* 1.14(0.085)*
Extraversion β52 −0.15(0.070)* −0.10(0.080) −0.10(0.081) −0.14(0.070)*
Association
Intercept β03 – 1.75(0.199) 2.19(0.274) 1.69(0.207)
Gender β13 – 0.23(0.116)* 0.30(0.281) 0.16(0.081)*
Age β23 – −0.02(0.055) 0.01(0.145) −0.06(0.043)
Education β33 – 0.10(0.051)* 0.14(0.133) 0.09(0.034)*
Neuroticism β43 – −0.92(0.187)* −0.89(0.211)* −0.73(0.170)*
Extraversion β53 – 0.08(0.072) 0.07(0.169) 0.16(0.067)*

IPC(2D-IND) corresponds to the 2-dimensional IPCmodelwith fixed class coordinates;IPC(2D-FREE)
to the 2-dimensional IPC model with free class coordinates; and IPC(3D) to the 3-dimensional IPC model.
a β03 = φ1 × β01 + φ2 × β02 − 0.5 × φ2

1 − 0.5 × φ2
2 − φ1 − φ2; βk3 = φ1 × βk1 + φ2 × βk2, where

k = 1, 2, . . . , 5
* Statistically significant, i.e., p < 0.05.

β̂51 = −0.46 with DYST; and β̂52 = −0.15 with GAD. Being an introvert (i.e. having lower
social engagement) seems to increase the chance of developing the mental disorders.

Among the background variables, education was the only predictor with statistically sig-
nificant association with both disorders, i.e., β̂31 = −0.15 with DYST; and β̂32 = −0.13 with
GAD. That is, less educated people had a higher chance of developing the disorders. The other
vulnerable groups were males (i.e. β̂12 = −0.26 with GAD) and elders (β̂21 = 0.20 with DYST).

The fourth column shows the results of the 2-dimensional IPC model with free class points;
its fit statistics were BIC = 3723.6 with fourteen parameters. The additional two parameters are
due to the estimated class points, i.e., φ̂1 = −0.01 and φ̂2 = −0.74. The association parameters
presented in the last row block of Table 4 under IPC(2D-FREE) are not free parameters because
they are estimated using the other parameters including the class coordinates as shown in equation
(20). Gender, education, and neuroticism had significant effect on the log-odds ratio, i.e., β̂13 =
0.23, β̂33 = 0.10, and β̂43 = −0.92, respectively. Neuroticism had a negative strong effect on
the log-odds ratio, which implies that the association between the two disorders became weaker
when the level of neuroticism for a given person increased; and the rate of change was about 0.92
for a unit change in neuroticism. In the case of education, the direction was positive which implies
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that the association between the disorders became stronger when a person became more educated
and the rate of change was about 0.10 for a unit change in education.

The results of IPC(2D-FIXED) andIPC(2D-FREE)models are not comparable as shown
mathematically in Section 3.1. This is also evident if we compare the effect of extraversion
under these models, i.e., β̂52 = −0.15 under the IPC(2D-FIXED) model which is statistically
significant, but it became insignificant under the IPC(2D-FREE) model, i.e., β̂52 = −0.10.

5.1.2. The 3-dimensional IPCModel The results of the 3-dimensional IPCmodel are presented
in the fifth column that corresponds to IPC(3D) and its fit statistic was BIC = 3755.4 with
eighteen parameters. The first two row blocks of parameters under the IPC(3D)model have the
same interpretation as the other models for the joint probabilities. Thus, we focus on the additional
parameters that are displayed in the last row block, which corresponds to the association model
as shown in equation (23).

It is important to note that these parameters are not comparable to those under the
2-dimensional IPC model, because the latter are specified in a lower-dimensional space and thus
are restricted, while the former handles the association structure using separate parameters on third
dimension. Only neuroticism had a significant effect on the log-odds ratio, i.e., β̂43 = −0.89.
This implies that the association between the two disorders became weaker when the level of
neuroticism for a given person increased. The rate of change was about 0.89 for a unit change in
neuroticism.

5.2. The BIPC Model

The last column of Table 4 shows the results from the BIPC model which had a fit statistic
BIC = 3735.6 with fourteen parameters. The first two row blocks display the marginal param-
eters. These results are equivalent to the IPC(2D-FIXED), and thus, they both have the same
interpretation.

The last row block shows the parameters of the association model that are obtained using the
other parameters and the estimated class points, i.e., φ̂1 = −0.21 and φ̂2 = −0.46. Except age,
all the predictors were statistically significant in the association model. The effect of extraversion
was β̂53 = 0.16, which implies that the association between the two disorders became stronger
when the level of extraversion increased. In the case of neuroticism, the effect was negative,
β̂43 = −0.73. Thus, the more neurotic a person was the weaker the association between the
disorders.

The results of the BIPC model can also be displayed using a biplot (Gower & Hand, 1996;
Gower et al., 2011). Figure 1 displays the biplot for the final BIPC model in which only the
predictors having significant effect on both dimensions are considered. The labels of the predictors
are placed at the positive side of the variable axis. On the variable axes markers are placed that
represent μX ± tσX , where μX is the mean of X , σX is the standard deviation and t = 0, 1, 2, 3.
From the biplot, it is evident that neuroticism had a strong association with both mental disorders
because its variable axis is long. The second influential predictor was extraversion pointing to the
reverse direction compared to neuroticism.

The axes of the biplot correspond to the marginal models, i.e., the horizontal axis corresponds
to DYST and the vertical axis to GAD. The angle between a variable axis and each axis of the
biplot can be used to evaluate the strength of their association, i.e., the smaller the angle, the
stronger the association between them. For example, the angle between extraversion and DYST is
smaller compared to the angle between extraversion andGAD,which indicates that the association
between extraversion and dysthymia is stronger. This result is in line with the estimates shown in
the last column of Table 4 under extraversion, i.e., β̂51 = −0.45 with DYST and β̂52 = −0.14
with GAD.
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Figure 1.
Biplot of the final BIPC model fitted on the NESDA data. The predictors neuroticism, represented by N; extraversion, by
E; and education, by EDU. The bivariate binary responses are dysthymia, represented by DYST; and generalized anxiety
disorder, by GAD. The class coordinates that correspond to the multinomial response variable, denoted by G, are also
displayed.

The effect of predictors on the association model can also be read from the biplot. We
showed mathematically in Section 3.1 that the IPC(2D-FIXED) is a marginal model with an
independence association structure. Thiswould correspond to the spatial solution in the biplot if the
last categorywas positioned at (γ41, γ42) = (1, 1). In the biplot displayed in Figure 1, however, the
last category was positioned at (0.79, 0.54) because φ̂1 = −0.21 and φ̂2 = −0.46.With every unit
increase in neuroticism the log-odds ratio of dysthymia andGADchanges byβ43 = φ1β41+φ2β42.
Both β41 and β42 were positive, while φ1 and φ2 were negative. Therefore, with an increase in
neuroticism the log-odds ratio goes down. Along similar lines, we can derive that the log-odds
ratio increaseswith an increase in extraversion. These derivations show explicitly that themarginal
model and the association structure are intuitively coupled, i.e., the same regression coefficients
are used and only the φ-parameters can be used to adjust sign and strength. The adjustment by
φ1 and φ2 is the same for every predictor variable.

6. Conclusion and Discussion

In this paper, we studied properties of the IPC model for analysing bivariate binary data in
the presence of predictors, focusing on the marginal probabilities and the association structure.
Researchers often model the marginal probability of an outcome variable without the influence
of the other outcome variable. Such models are referred as marginal models since the effect of
the other outcome variable is marginalized. In addition to the marginal models, investigators
are sometimes interested in modelling the association structure between the binary responses.
It is expected that the two binary responses are correlated as they are measured on the same
subject.
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We found the following three results about the IPC model for analysing bivariate binary data.
The 2-dimensional IPCmodel with fixed class point (IPC(2D-FIXED)) represents the marginal
models with an independence association structure between the binary responses. Each dimension
under the IPC(2D-FIXED) model pertains to one of the binary response variables. This result
does agree with the finding by Liang and Zeger (1986) in which they showed that fitting a separate
logistic regression model for each binary response variable gives consistent parameter estimates
but biased standard errors. In the IPC model, however, the standard errors are not biased because
estimation of model parameters is based on a multinomial likelihood function.

The 3-dimensional IPC model (IPC(3D)) represents the association structure in the third
dimension. Thismodel, however, misspecifies themodels for themarginal probabilities. The com-
promise between the former two IPC models is a 2-dimensional IPC model with free class points
(IPC(2D-FREE)). We showed, using simulation studies, that this latter model represents the
association model as a form of restricted model. Like the IPC(3D)model, the IPC(2D-FREE)
model misspecified the models for the marginal probabilities. Therefore, we conclude that the IPC
model represents either the models for the marginal probabilities or the model for the association
structure, but not both of them at the same time.

We therefore considered possible extensions of the IPC model for representing both the
marginal models and the association model at the same time. We modified the multinomial likeli-
hood function following Bahadur (1961) and Lipsitz, Laird, and Harrington (1990). The extended
IPC model is called the bivariate IPC (BIPC) model. Using simulation studies, we showed that
the BIPC model represented both the models for the marginal probabilities and the model for the
association structure well.

Unlike existing marginal models for bivariate binary data, the results of the BIPC model can
be displayed graphically in a biplot which enhances the interpretation of the model. The axes
in the biplot correspond to marginal models of the bivariate binary data, i.e., the horizontal axis
corresponds to the first response variable and the vertical axis to the second response variable. The
angle between the variable axis and each axis of the biplot is used to explain the strength of their
association. In the same biplot, one can also read the relationship between a predictor variable and
association structure (i.e. odds ratio). Therefore, we use both the φ-parameters and the marginal
parameters to explain the direction and strength of their relationship. If both φ-parameters are
found to be positive, it is an indication of a strong positive relationship between a predictor variable
and the association structure. Similarly, an inverse relationship is characterized by the presence
of negative estimates for both φ-parameters.

In this paper, our focus was on application of the (B)IPCmodel for analysing bivariate binary
data. Marginal modelling of multivariate polytomous type of responses has been an interest
in social and other empirical sciences (Bergsma, 1997; Bergsma, Croon, & Hagenaars, 2009;
Molenberghs & Lesa re, 1994, 1999). The BIPC model can easily be extended for analysing
bivariate polytomous responses bymodifying the class coordinates to accommodate the additional
response categories. At this stage, it is, however, not straight forward to extend the BIPC model
for analysing multivariate binary responses. This is due to the fact that both the pairwise and
higher-order association structure parameters must be specified in the likelihood function. With
three binary responses (i.e. Y1, Y2, and Y3), for example, three pairwise associations and a three-
way association parameters must be specified which makes the computation cumbersome. If the
interest is only on the pairwise association, the BIPC model for bivariate binary data can be
extended by modifying the class point matrix.

We made the data and source codes (R / SAS) used in the simulation studies and in the
application available on the online repository system GitHub. The following link can be used to
get access to the files: https://github.com/workuhm1/BIPCM.

https://github.com/workuhm1/BIPCM
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Appendix

Identification of the BIPC Model

In this section, we address identification issues of the BIPC model. As shown in equation (25),
the marginal models are represented in the BIPC model as,

πi1· = exp(−0.5δi1·)
exp(−0.5δi0·) + exp(−0.5δi1·),

πi·1 = exp(−0.5δi·1)
exp(−0.5δi·0) + exp(−0.5δi·0),

where δil· = ∑2
m=1 (ηim − γl·m)2 and δi·l = ∑2

m=1 (ηim − γ·lm)2, l = 0, 1. Like simple
logistic regression (LR) model, the BIPC model can also be represented using log-odds, i.e.,

log

[
πi1·

1 − πi1·
]

= 0.5δi0· − 0.5δi1·,
log

[
πi·1

1 − πi·1
]

= 0.5δi·0 − 0.5δi·1.

In the BIPC model, each binary response variable is positioned on one and only dimension, and
thus, the class coordinates are specified as follows:

γl· =
[
γ0·1 0
γ1·1 0

]

and γ·l =
[
0 γ·02
0 γ·12

]

,

where the first binary response (Yi1) is positioned on the first dimension and the second binary
response variable (Yi2) on the second dimension.
Suppose xi1 represents one of the predictor variables. Let us now simplify the log-odds model by
replacing the above class points. That is,

log

[
πi1·

1 − πi1·
]

=
2∑

m=1

(ηimγ1·m) −
2∑

m=1

(ηimγ0·m) + 0.5
2∑

m=1

γ 2
0·m − 0.5

2∑

m=1

γ 2
1·m

= ηi1(γ1·1 − γ0·1) + 0.5 × (γ 2
0·1 − γ 2

1·1)
= (β01 + β11xi1)(γ1·1 − γ0·1) + 0.5 × (γ 2

0·1 − γ 2
1·1)

= β01(γ1·1 − γ0·1) + β11(γ1·1 − γ0·1)xi1 + 0.5 × (γ 2
0·1 − γ 2

1·1)
= β∗

01 + β∗
11xi1,
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where β∗
01 = β01(γ1·1 − γ0·1) + 0.5 × (γ 2

0·1 − γ 2
1·1) and β∗

11 = β11(γ1·1 − γ0·1). So, for a
unit increase in xi1 the log-odds in the BIPC model changes by β11(γ1·1 − γ0·1). Similarly, the
simplified log-odds form of the second binary response variable becomes log[πi·1/(1−πi·1)] =
β02(γ·12 − γ·02) + β12(γ·12 − γ·02)xi1 + 0.5 × (γ 2·02 − γ 2·12) = β∗

02 + β∗
12xi1.

At this stage, the BIPC model is not identified since both the regression weights and the class
coordinates influence the distance model parameters. For unique identification of model parame-
ters, we must impose restrictions on the class coordinates. This can be achieved, for example, by
setting a unit difference between the class coordinates. That is, γ1·1 = 1 and γ0·1 = 0 for the first
response variable, Yi1; and γ·12 = 1 and γ·02 = 0 for Yi2. Thus, β∗

1s = β1s and β∗
0s = β0s − 0.5,

where s = 1, 2.
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