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a b s t r a c t

A problemwith the modeling of repeated multinomial response data is the dimensionality
of the response variable. For reducing this dimensionality and enhancing interpretability
multidimensional scaling techniques are utilized. The resulting trend vector model
provides an easily interpretable graphical display with trajectories of different groups over
time. A generalized estimating equations scheme is employed for obtaining estimates of
the parameters. Model selection is based on the Bayesian Information Criterion and the
bootstrap. For illustration, the model is applied to a data set.
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1. Introduction

Three main families of models exist for the analysis of longitudinal data (Diggle et al., 2002; Molenberghs and Verbeke,
2005): marginal models, transitional models, and subject specific models. In the first type, marginal models, responses
are modeled marginalized over all other responses; the association structure is typically captured by a set of association
parameters. In transitional models any response in the sequence is modeled conditional upon (a subset of) past responses.
In subject specific models the responses are assumed independent given a set of subject specific parameters. The three
types of models typically answer different questions. The marginal approach handles the question how, on average, the
system of probabilities evolves over time in the population, whereas the subject specific approach handles the question
how this system of probabilities evolves over time for each individual subject. The transitional approach takes into account
the response at previous time points which is qualitatively different from the two other perspectives. Whereas in the case
of a normally distributed outcome variable these types of models are naturally connected, for categorical outcomes there is
no close connection (Diggle et al., 2002; Molenberghs and Verbeke, 2005). For most kinds of data well-established statistical
tools have been developed for the analysis of longitudinal data in each of the three families. For overviews, see for example
Diggle et al. (2002), Verbeke and Molenberghs (2000), Molenberghs and Verbeke (2005) or Hedeker and Gibbons (2006).
A type of data that has received less attention is repeated multinomial unordered data, although there have been some
developments (Hartzel et al., 2001; Hedeker and Gibbons, 2006; Lipsitz et al., 1994). The major problem with this kind of
data is the dimensionality, i.e. when the response variable has G classes the dimensionality is G− 1 in multinomial logistic
regression models, whereas in most statistical models for continuous or binary response variables the dimensionality is 1.
This increased dimensionality may trouble estimation and interpretation.
Multidimensional scaling procedures have been proposed for the analysis of repeated multinomial data that reduce the

dimensionality. De Rooij (2008a), for example, showed distance models for two-way and three-way transition frequency
data with a ‘law of gravity’ interpretation. Simpler representations of trends are given in the so-called slide vector
model (Zielman and Heiser, 1993; De Rooij and Heiser, 2000), which simultaneously provide a similarity structure of the
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Table 1
The data format.

Subject Time Response Explanatory variables

1 1 f111 f112 . . . f11G x111 x112 x113 . . .
1 2 f121 f122 . . . f12G x121 x122 x123 . . .
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outcome classes as well as a trend. The outcome of a slide vector model is easily interpretable as demonstrated in the
two papers referred to above. However, both the models developed in De Rooij (2008a) as well as the slide vector models
are restricted to discrete time problems with two or three measurement occasions. Having more measurement occasions
or when measurements are not taken at the same time points for different subjects makes application of these methods
impossible.
One major problem with longitudinal data is that subjects drop out of the study. Both, in the law of gravity models of De

Rooij (2008a) as well as in the slide vector models transition frequency data are analyzed. Having such data it is difficult
to represent cases with incomplete data. One way to deal with this problem is to adapt the transition frequency table by
including an extra category labeled ‘missing’. A problemwith this approach is that the subjectswithmissing data at a specific
time point are considered to be a homogeneous group (Meulman, 1982). A solution to this problem is to give each missing
subject a separate category, but this would make the frequency table very sparse and parameter estimates ill defined.
In many applied longitudinal problems there are different groups and the main goal of the analysis is the difference in

development of the groups. Although Zielman and Heiser (1993) point out a way to deal with multiple groups at two time
points, their approach is limited since the trend over time has the same direction for all groups, and can only be stronger
for certain groups compared to others. Moreover, when there are many groups their procedure may become problematic,
since for each group a transition frequency table has to be defined, which will become very sparse for increasing number of
groups.
In this paper a statistical model based on multidimensional scaling techniques for repeated multinomial data will be

developed that can handle

(1) more than three time points;
(2) continuous time measurements;
(3) differing number of repeated measurements for the subjects;
(4) different trends over time for subgroups.

In Section 2 we will introduce our model, discuss visualization, estimation, and model selection. The proposed model will
be applied to an empirical data set in Section 3 and we will conclude with some discussion.

2. Modeling of longitudinal multinomial data

2.1. The data

Before we introduce our model we show the data format and introduce notation. For i = 1, . . . , n subjects we have for
each time point t = 1, . . . , Ti a response on a categorical variable with G categories, indexed by g = 1, . . . ,G. This response
is gathered in a dummy coded vector fit = [fit1, . . . , fitG]T with

∑
g fitg = 1.We also have for each subject at every time point

a vector with explanatory variables, denoted by xit = (xit1, . . . , xitp)T. In Table 1 we show the layout of the data. If a subject
has a missing response for a specific time point it just means that the row corresponding to that subject and time point is
deleted. Note that in Table 1 we have a single column with time information. Later we will include time into the vector of
explanatory variables and transform it to dummy coding or maybe use time and squared time as explanatory variables.

2.2. The trend vector model

We will model the conditional probability πgt(xit) of an outcome category g = 1, . . . ,G at time point t = 1, . . . , Ti, for
a subject i (i = 1, . . . , n) with p-dimensional covariate vector xit . This vector contains both time and group information
and possibly other explanatory variables. Note that the time variable in Table 1 is now included in this vector. The
conditional probability will be modeled by the squared distance between two points in Euclidean space of dimensionality
M (M ≤ G − 1). Therefore we introduce ideal points yit for the subjects and class-points zg for the categories. The ideal
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points yit = (yit1, . . . , yitM)T, which are gathered in a matrix Y = (y11, . . . , y1T1 , . . . , ynTn)
T, are a linear combination of the

predictor variables X, i.e.,

Y = XB,

whereX = (x11, . . . , x1T1 , . . . , xnTn)
T. The conditional probability that subject i at time point t will be in class g is then equal

to

πgt(xit) =
exp(−d2(it)(g))∑
k
exp(−d2(it)(k))

,

where d2(it)(g) is the squared Euclidean distance between the ideal point for subject i at time point t and the class point for
category g inM-dimensional space, i.e.

d2(it)(g) =
M∑
m=1

(yitm − zgm)2.

This model is coined the trend vector model. For interpretation the log odds of choosing category a above b at time point t
for a given ideal point can be derived, namely

log
πat(xit)
πbt(xit)

= d2(it)(b) − d
2
(it)(a).

The odds are in favor of the category closest to the ideal point of a person: a clear and natural interpretation of the graphical
display.

2.3. Estimation

The model we specified in Section 2.2 is a marginal model, it focuses on the marginal distributions at the different time
points. Formarginalmodels there are generally two estimation approaches to obtain parameters (see Agresti (2002), Chapter
11): maximum likelihood estimation and estimation using generalized estimating equations (GEE).
For maximum likelihood estimation the complete joint distribution has to be specified while the model only applies to

the marginal distributions of the responses at the different time points. When the number of time points is large or when
explanatory variables are continuous maximum likelihood estimation is computationally infeasible.
We will estimate our model by maximizing

L =
n∑
i=1

Ti∑
t=1

log
G∏
g=1

πgt(xit)fitg , (1)

which is the likelihood function for cross-sectional data. In our case it is not a true likelihood, since the dependencies among
the repeated responses are not taken into account. As is shown by Liang and Zeger (1986) maximizing L with repeated
measurements does provide consistent estimates of the model parameters. However, standard errors computed from the
Hessian or informationmatrix of this function are generally biased. To deal with this bias Liang and Zeger (1986) introduced
a sandwich estimator. For generalized linear models Liang and Zeger (1986) also adapt the estimation equations using these
sandwich function to obtain generalized estimating equations. Various forms of correlation structures have been proposed
to obtain the sandwich function like independence, exchangeable, first order auto regressive, or unstructured. When
maximizing (1) we implicitly use the GEE framework with independence assumptions to estimate the model parameters.

2.4. Identification

The parameters of the trend vector model are the regression weights B and the class points Z. The model has rotational
freedom and a more intricate indeterminacy, that is, the probabilities remain the same when a constant is added for each
subject:

πgt(xit) =
exp(−d2(it)(g))∑
k
exp(−d2(it)(k))

=
exp(−d2(it)(g))+ ci∑
k
exp(−d2(it)(k))+ ci

.

So, we can add a constant to each subjects’ squared distances to the class points without changing the probabilities (see De
Rooij (2008b)). Since the probabilities in our model are solely based on squared Euclidean distances, we have that a model
based on any squared distancematrixD∗ defined asD∗ = D+c1T provides the same probabilities as themodel definedwith
squared distances D. Suppose B and Z give D and B∗ and Z∗ give D∗. How are these related? The squared distance matrices
can be written as

D = diag(XBBTXT)1T
+ 1(diag(ZZT))T − 2XBZT,
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and

D∗ = diag(XB∗BT
∗
XT)1T

+ 1(diag(Z∗ZT
∗
))T − 2XB∗ZT

∗
.

Since these two are equal up to an additive row constant, it follows that

(1) diag(XBBTXT)may change without restrictions;
(2) diag(Z∗(Z∗)T) = diag(ZZT)+ q1 for any q.
(3) XBZT

= XB∗ZT
∗
+ c1T.

Which means that we can transform Z and B to

Z∗ = 1vT
+ ZT, and

B∗ = B(T−1)T,

under the restriction that diag(Z∗(Z∗)T) = diag(ZZT)+ q1. From these equations we see that a rotation is always possible,
in that case v = 0. Furthermore, in dimensionalityM = G−1, the number of indeterminacies isM(M+1)− (G−1) = M2:
any non-singular T can be used and this can be solved by finding an appropriate vector v such that the restrictions are true.
Summarizing, we have M2 unknowns in T, M in v but with G − 1 restrictions. The number of indeterminacies thus equals
max(M(M − 1)/2,M(M + 1)− (G− 1)), and the number of independent parameters is

npar = (p+ G)M −max(M(M − 1)/2,M(M + 1)− (G− 1)). (2)

In order to obtain an identified solution we observe that row-wise centering makes solutions equal. Moreover, if we
define 5 = {πgt(xit)}, and 1 = log5 we also have −1J = DJ, with J = IG − 1G1T

G/G. This makes it possible to use
the metric unfolding with single centering (Heiser, 1981; De Rooij, 2008b) for identification, since this solution ignores the
row means altogether (Heiser, 1981, p. 53). This procedure works fine, except in the situation of maximum dimensionality,
i.e. M = G − 1. In this case we identify the solution by a transformation of Y such that YTY = nI (which can be obtained
using a singular value decomposition), and solve for v.

2.5. Model selection

Model selection comprises two issues: determination of the dimensionality and determination of valuable predictors.
For determining the dimensionality we use the Bayesian Information Criterion (BIC) for which Pan and Le (2001) showed
that in a GEE scheme with working independence assumption (the scheme we use) it performed well for correlated data.
The BIC is then defined as follows

BIC = −2L+ npar× log(n),

with L defined in Eq. (1) and the number of parameters (npar) is defined in Eq. (2).
After choosing a specific dimensionality the solutionwill be bootstrapped to obtain empirical confidence intervals for the

regression weights and to verify which predictor variables contribute to the trend vectors. It is important that resampling
is based on the level of the subjects to reflect the correlation structure of the data (Pan and Le, 2001; Sherman and le Cessie,
1997). The generated bootstrap replicates automatically retain the same dependence structure as the original data.

2.6. Visualization of trends

The results of the classification model described above could be represented in a joint plot reminiscent of the
biplot (Gower and Hand, 1996) where the variables are depicted by vectors with length and direction determined through
the regression weights. For longitudinal data, however, we would like to represent the trajectories over time. More
specifically, suppose we have two groups and both linear and quadratic time are important explanatory variables plus their
interactionswith the grouping variable. Just depicting each of these variables in a joint plot does not provide the information
we would like to get out of a longitudinal analysis. What we would like is the trajectories for the two groups over time,
i.e. the combined effect of linear and quadratic time for the two groups separately. To visualize such trajectories we need the
estimated ideal points and join these together over the time variable. The ideal points are defined by the regression weight
vectors, and so these have to be transformed into trend vectors. The procedure differs slightly for discrete and continuous
time models, yielding piecewise linear trends and smooth trends, respectively. The procedures will be described using an
example, but of course they are more general.
Consider an example with two groups measured at four time points and there is an interaction between group and time.

In that case we have a dummy for group (xg ) and three dummy variables for time (xt1, xt2, xt3), as well as three dummy
variables for the interaction of group and time (xgt1, xgt2, xgt3). The dummy variables for time are all zero at the baseline
measurement, xt1 = 1 for the second measurement, zero otherwise. For the third time point xt2 = 1, zero otherwise, and
for the fourthmeasurement xt3 = 1, zero otherwise. The interaction dummies are products of the time and group dummies.
The ideal points for dimensionm are given by the following equation

yitm = xgbgm + xt1bt1m + xt2bt2m + xt3bt3m + xgt1bgt1m + xgt2bgt2m + xgt3bgt3m.
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From this it follows that the trend vector for the group with xg = 0 is obtained by joining the origin with the end-points of
bt1, bt2, and bt3, while for the group with xg = 1 the trend vector is obtained by joining the point bg with the end-points of
the vectors defined by bg + bt1 + bgt1, bg + bt2 + bgt2, and bg + bt3 + bgt3. An example of such a graphical display is given
in Fig. 1, discussion of which follows in Section 3.2.
For continuous timewe obtain smooth trend vectors. Again consider the two group examplewith four time points where

in this case linear and quadratic time are used as predictors in the model. Again suppose that there exists an interaction
between group and time. First define t to be a time variable in the range of the measurements in the data. Now define two
time variables xt = t and xt2 = t

2. Like before we define xgt and xgt2 to be the product of the group dummy and the time
variables. The ideal points in this case are defined by

yitm = xgbgm + x1btm + xt2bt2m + xgtbgtm + xgt2bgt2m.

The trend vector for the group with xg = 0 starts at the origin and having t × bt + t2 × bt2 ; for the group with xg = 1 the
trend vector starts at bg and follows bg+ t×(bt+bgt)+ t2×(bt2+bgt2). An example of such a display can be found in Fig. 2,
discussion of which follows in Section 3.3. The procedures for discrete and continuous time can both be easily adapted for
any number of groups and any number of time points.

2.7. Confidence bands for the trend vectors

Often it is of interest to see the variability in trend vectors, i.e. to have confidence bands around the trend vectors.
Simultaneously it is of interest to see the variability in the class points. Both can be obtained from the bootstrap. For the
trend vector we can, at several predefined values of the explanatory variables x0, compute ŷ

b
0 = xT

0B̂
b
, where Bb is the bth

bootstrap replicate. Assuming normality of the bootstrap we can compute the covariance matrix of yb0, that is (ĉov(Ŷ0)).
Confidence intervals are given by the interior of the ellipse defined by the equation[

c− ŷ0
]T ĉov(Ŷ0)−1 [c− ŷ0

]
= χ,

where χ is the threshold at a desired probability level of a chi-squared variable with M degrees of freedom (the length of
y0). Similarly, a confidence ellipse around class point ẑg is given by the equation[

c− ẑg
]T ĉov(Ẑ)−1 [c− ẑg

]
= χ.

2.8. Software

We implemented the models, bootstrap and graphical procedures in MATLAB (Mathworks, 2006). The programs can be
obtained from the author upon request.

3. Application

3.1. McKinney Homeless Research Project

This data set is discussed in chapter 10 and 11 in the book by Hedeker and Gibbons (2006). The data can be obtained from
the website of Donald Hedeker, accompanying the book. The aim of the McKinney Homeless Research Project in San Diego
was to evaluate the effectiveness of using an incentive as a means of providing independent housing to homeless people
with severe mental illness. Housing certificates were provided from the Department of Housing and Urban Development
to local authorities in San Diego. These housing certificates are designed to make it possible for low income individuals to
choose and obtain independent housing in the community. A sample of 361 individuals took part in this longitudinal study
andwere randomly assigned to the experimental or control condition. Eligibility for the project was restricted to individuals
diagnosedwith a severe and persistent mental illness whowere either homeless or at high risk of becoming homeless at the
start of the study. Individuals’ housing status was classified at baseline and at 6, 12 and 24 month follow up. The focus will
be on examining the effect of the incentive on repeated housing outcomes across time. Table 2 gives some characteristics of
the data.
In Table 2 we see that for the control group most subjects initially live on the street. The proportion living on the street

goes down in the first year but then increases again. The proportion of subjects living in a community center raises the
first year but then declines, while the proportion of subjects that lives independently raises over the time of study. For
the experimental group the proportion of subjects living on the street decreases the first half year after which it increases
and stabilizes. The proportion of subjects living in a community center decreases the first year but then increases again. The
proportion of subjects living independently increases rapidly but then declines. All trends except for the experimental living
on the street, indicate that a quadratic treatment of time might capture the pattern in the data well.
In the following two subsections we will analyze this data set, first treating time in a discrete manner, afterwards as

continuous. Note that for this data set maximizing (1) simplifies since we can sum the data over subjects in the same group.
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Table 2
Housing condition across time by group: proportions and sample size.

Group Status Time point
Baseline 6 12 24

Control Street .555 .186 .089 .124
Community .339 .578 .582 .455
Independent .106 .236 .329 .421
N 180 161 146 145

Experimental Street .442 .093 .121 .120
Community .414 .280 .146 .228
Independent .144 .627 .732 .652
N 181 161 157 158

Fig. 1. Trend vectormodel for homeless data treating time discretely. The two arrows represent the trajectories for the experimental and control condition.
The dotted ellipses give 1 standard deviation confidence intervals around the trend vectors at the points defined by the crosses. The solid ellipses around
the class points give 1 standard deviation confidence regions. The lines represent boundaries where the odds for two categories are even.

3.2. Discrete treatment of the time variable

If we treat time discretely we have the following seven predictors variables

(G) a dummy variable for experimental vs. control, xg = 1 for experimental;
(T1) dummy for 6 month vs. baseline, xt1 = 1 for t = 6, zero otherwise;
(T2) dummy for 12 month vs. baseline, xt2 = 1 for t = 12, zero otherwise;
(T3) dummy for 24 month vs. baseline, xt3 = 1 for t = 24, zero otherwise;
(GT1) group by time (T1) interaction dummy, xgt1 = xg × xt1;
(GT2) group by time (T2) interaction dummy, xgt2 = xg × xt2;
(GT3) group by time (T3) interaction dummy, xgt3 = xg × xt3.

Since the response variable has three categories the solution has either one or two dimensions. For the one-dimensional
solution the BIC-statistic equals 2472.9where it is 2447.3 for the two-dimensional solution. It seems that a two-dimensional
solution is needed to represent this data. For the two-dimensional solution a balanced bootstrap was performed using 500
resamples. The results of the bootstrap (not shown) indicate that there were already initial differences between the control
and experimental group and that both time and the interaction between time and condition resulted in regression weights
different from zero.
The trend vectormodelwith one standard deviation confidence bands is shown in Fig. 1. In this figure both the trajectories

for the two groups as well as boundary lines are shown. These boundary lines show where the odds of choosing one of two
categories are even. It can be seen that the experimental and control group have very different trajectories over time, i.e., the
experimental group goes to independent housing much quicker than the control condition and remains in the independent
housing class while the control group moves towards the community housing class and at the end makes a move in the
direction of the independent housing class. At the end of the evaluation period the control group has about even odds of
being in the independent housing class or the community housing class. The confidence bands around the trend vectors as
well as the confidence regions of the class points indicate that the configuration found is quite stable.
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Fig. 2. Trend vector model for homeless data treating time continuously. The two arrows represent the trajectories for the experimental and control
condition. The dotted ellipses give 1 standard deviation confidence intervals around the trend vectors at the points defined by the crosses. The ellipses
around the class points give 1 standard deviation confidence regions. The lines represent boundaries where the odds for two categories are even.

3.3. Continuous treatment of the time variable

We will again model the homeless data but now treating time in a continuous manner. As discussed above in Table 2 it
can be seen that most proportions go first up (or down) and later down (or up), which suggests a quadratic time pattern.
Therefore the following predictors will be used

(G) a dummy variable for experimental vs. control, xg = 1 for experimental;;
(T) linear time with values xt = t , t = 0, 6, 12, 24;
(T2) quadratic time with values xt2 = t2, t = 0, 6, 12, 24;
(GT) group by time interaction variable defined as xgt = xg × xt ;
(GT2) group by time interaction variable defined as xgt2 = xg × xt2 .

In one dimension the BIC equals 2470.9 while in two dimensions it is 2436.4. Again the two-dimensional solution is favored.
The results of the bootstrap (not shown) indicate that all predictors are different from zero.
The resulting trend vector plot is shown in Fig. 2. It is very similar to the discrete time plot (Fig. 1). The experimental

group is moving much faster into the independent housing class, while the control group is moving into the community
housing group. The quadratic time effect for the experimental condition merely effects in a return in the direction of the
starting position at the end of the study, while for the control condition it bends towards the independent housing class.

4. Discussion

A marginal model for longitudinal multinomial data was proposed that utilized multidimensional scaling techniques in
order to reduce the dimensionality. Compared to other multidimensional scaling models our model is able to handle data
where (1) people have different number of measurements; (2) measurements are obtained continuously over time; (3)
subjects are classified in groups with possible different trends. This can all be done in the so-called trend vector model.
The trend vectormodel is an easily interpretablemodel for longitudinal multinomial data. It results in a graphical display

that pictures the trend over time of the groups under study. In maximum dimensionality the trend vector model equals the
multinomial logit model, and thus the trend vector model provides a graphical display of the multinomial logit model, in
which trajectories are represented. These are of main interest in longitudinal research.
When treating time in a continuous manner with linear and quadratic time effects, the composite effect of time might

be hard to interpret in a multinomial logit model, whereas in our graphical display the interplay between these two effects
is easily interpreted. The trend vector model has the possibility of dimension reduction, which might be a virtue in case the
number of classes in the response variable is large.
We estimate the model using the cross-sectional likelihood, ignoring the dependencies among the responses. This can

be justified by GEE theory: we basically use GEE with working independence assumptions to obtain parameter estimates.
Independence assumptions might seem a bit naive, but a fair amount of studies indicate that the more sophisticated
assumptions might be counterproductive (see Crowder (1995), Lumley (1996), O’Hara Hines (1997), Sutradhar and Das
(1999) and Pepe and Anderson (1994)). Confidence intervals for the parameter estimates were obtained using the bootstrap.
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Alternativelywe could haveworkedwith the robust form as is often discussed in relation toGEE estimation. Further research
is needed on standard errors and other issues in model selection.
We displayed one standard deviation confidence bands around the trend vectors. One should however, be cautious in

interpreting such confidence intervals, since in multidimensional scaling techniques points often move together (see Kiers
and Groenen (2006)). In our case this means that a trend vector moves but simultaneously the class point also moves.
Visualizing such dependencies in a display is impossible, therefore Kiers and Groenen (2006) used movies of bootstrap
solutions.
A similar modeling idea was proposed by Adachi (2000, 2002). He proposed to model trends using homogeneity analysis

(see Gifi (1990)), a variant of principal component analysis for nominal data. Such an approach renders a trend vector for
every subject under study, which is smoothed using spline functions.
We advertised the trend vector model for cases where the number of measurements over subjects differs. We have to

be careful, however, if these differences are due to drop-out or other forms of missing data. When data are missing in the
GEE method they should bemissing completely at random (Little and Rubin, 1987), that is, the missingness does not depend
on the observed nor the missing data. If this is not the case, the GEE scheme can break down as is illustrated in Kenward
et al. (1994). If this is the case, imputation strategies should be used to obtain complete series of observations. However,
care should be exercised if much data are missing.
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