
Studying triadic distance models under a likelihood
function

Mark de Rooij

Leiden University
Department of Psychology

Summary: Triadic distance models are relatively new. Their merits and
demerits are fairly unknown. In the present paper we will study triadic
distance models and bring the understanding of those models to a next level.
Therefore, the models are studied under a Multinomial sampling scheme and
a detailed investigation of the likelihood function results in relationships with
multiple correspondence analysis and three-way quasi-symmetry models.

1. Introduction
The analysis of three-way tables has received an enormous amount of

attention in the last few decades. In the case of distance models, the attention
was initially focused on three-way two-mode data, but recently the attention
shifted towards three-way one-mode and three-way three-mode data. The
latter data types require a different modeling strategy: we are not after
a graphical representation of one mode that is afterwards transformed for
each specific instance of the second mode, but instead we are looking for a
graphical representation of the entire three-way table in a single Euclidean
space. The entries of the three-way table can in some way be viewed as
(dis)similarities that relate three categories of (different) variables. Triadic
distance models try to represent the three categories as points in a Euclidean
space, such that a measure of distance for these three points as closely as
possible approximates the dissimilarities in the three-way table. A popular
class of triadic distance models is formed by the Lp-transform, where a triadic
distance is defined on dyadic distances:

dijk =
[
dp

ij + dp
jk + dp

ik

]1/p

. (1)

Here dijk is the triadic distance between the three points i, j, and k; dij

are the usual (dyadic) distances between two points i and j. The precise
definition of the dyadic distances is left for the next section.

In the present paper we will study triadic distances, defined by the L2-
transformation. Therefore, we apply them to contingency tables assuming a
Multinomial sampling scheme, and study the likelihood function in more de-
tail. This procedure establishes relationships of triadic distance models with
Multiple Correspondence Analysis and Quasi-Symmetry models for three-
way tables.



2. Triadic distance models
The study of triadic distance models was initiated by Hayashi (1972). A

number of papers have been written since: Cox, Cox, and Branco (1991),
Pan and Harris (1991), Joly and Le Calvé (1995), Daws (1996), Heiser and
Bennani (1997), De Rooij and Heiser (2000), De Rooij (2001, submitted).
Two papers (Joly and Le Calvé, 1995 and Heiser and Bennani, 1997) propose
an axiomatic framework for the study of triadic distance models. All these
papers assumed a three-way square, i.e., a K ×K ×K, proximity matrix.

We will focus on the Generalized Euclidean Model, where p = 2 in the
Lp-transform. The triadic distance in this case is defined as the square root of
the sum of squared dyadic Euclidean distances. The squared triadic distance
is given by

d2
ijk(X) = d2

ij(X) + d2
jk(X) + d2

ik(X), (2)

where dij(X) is the usual Euclidean distance between points i and j, i.e.,

dij(X) =

[∑
m

(xim − xjm)2
]1/2

. (3)

Joly and Le Calvé (1995) show this triadic distance is equal to the square
root of the inertia, the sum of squared distances of each of the three points
towards their center of gravity. In a one dimensional representation the
triadic distance is then equal to the standard deviation of the three points.
In a multidimensional representation we can consider the triadic distance as
a natural generalization of the standard deviation, and so the squared triadic
distance as a natural generalization of the variance of the three points.

For a further development later, it is good to note here that Heiser and
Bennani (1997) showed this model (2) can be rewritten as

d2
ijk(X) = trXT AijX + trXT AjkX + trXT AikX

= trXT AijkX, (4)

where tr denotes trace, the sum of the diagonal elements of a matrix, Aij =
(ei−ej)(ei−ej)T , and ei is the i-th column of a identity matrix of order K.

For the Generalized Euclidean Model we give an example of a graphical
representation in Figure 1. In this figure we see 5 points a, b, c, d and e. The
triadic distance is defined as the square root of the sum of squared dyadic
distances. Comparing some distances we find that dabe < dade since dab < dad

and the other dyadic distances are equal; dabd < dacd, since
√

(22+22+42) <√
(32 + 12 + 42).
De Rooij and Heiser (2000) extend the work of Heiser and Bennani to the

unfolding situation, and discuss restrictions on triadic unfolding models to
visualize trends in longitudinal studies. For the triadic unfolding model any
I × J ×K-matrix with proximity data can be used. The restricted unfolding
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Figure 1: An configuration with triadic distances.



models, proposed by De Rooij and Heiser, can only be applied to K×K×K-
tables. In the present paper we will study the (restricted) triadic unfolding
models in more detail.

In the triadic unfolding model we estimate a coordinate matrix for each
way. For three-way square tables the triadic unfolding model allows for three-
way asymmetry. Still the triadic distance is defined as the square root of the
sum of dyadic distances, but the dyadic distances are defined by

dij(X;Y) =

[∑
m

(xim − yjm)2
]1/2

. (5)

The squared triadic unfolding distance is then defined as

d2
ijk(X;Y;Z) = d2

ij(X;Y) + d2
jk(Y;Z) + d2

ik(X;Z). (6)

In the triadic unfolding model the subscript i is attached to the first way,
and thus to the coordinates x; j is attached to the second way, and thus
to the coordinates y; k is attached to the coordinates for the third way, z.
The triadic unfolding model has the same interpretation as shown in Figure
1, but in the triadic unfolding model distances between points representing
categories of one way are not related to observations.

We can rewrite the triadic unfolding model also in matrix terms. There-
fore, first define the matrix S with X, Y, and Z concatenated vertically, that
is, S is defined as

S =




X
Y
Z


 . (7)

Equation 6 can then be rewritten as

d2
ijk(X;Y;Z) = trST AijS + trST AjkS + trST AikS

= trST AijkS, (8)

where in this case Aij = (ei − eI+j)(ei − eI+j)T ; Aik = (ei − eI+J+k)(ei −
eI+J+k)T ; Ajk = (eI+j−eI+J+k)(eI+j−eI+J+k)T and ei is the i-th column
of a identity matrix of order I + J + K.

The generalized slide vector models proposed by De Rooij and Heiser
are restricted triadic unfolding models. These restricted models can only
be applied to three-way tables where each way refers to the same variable.
So the three-way matrix needs to be square. The imposed restrictions are
zjm = yjm − vm, and yjm = xjm − um, for the slide-2 model. Consequently,
zjm = xjm − um − vm. The square slide-2 distance model is then defined by

d2
ijk(X;u;v) = d2

ij(X;u) + d2
jk(X;v) + d2

ik(X;u;v), (9)



where d2
ij(X;u) =

∑
m(xim − xjm + um)2, the slide vector model as defined

by Zielman and Heiser (1993). A further restriction is vm = um, for the slide-
1 model. We obtain the triadic distance model by imposing the restriction
vm = um = 0.

In matrix terms the constraints can be written as S = ER, where E is a
known design matrix, and R is a matrix with the coordinates X and possibly
the slide vectors u and v concatenated vertically. Define the three arrays
E for the slide-2 model, the slide-1 model and the triadic distance model,
respectively, with identity matrices of order K (I), and K × 1 vectors with
ones (1) and zeros (0):

E2 =




I 1 0
I 0 0
I 0 −1


 , E1 =




I 1
I 0
I −1


 , E0 =




I
I
I


 . (10)

We will make use of these design matrices in the next section to further
analyze the generalized slide vector models.

3. Application to contingency tables
De Rooij and Heiser (2000) apply their triadic distance model to a three-

way contingency table, assuming that the frequencies are a measure of sim-
ilarity. Here we will also apply the models to contingency tables, but in the
present paper we will assume a Multinomial sampling scheme for the observed
frequencies. In general, the kernel of the log-likelihood function for a model
under Multinomial sampling can be written

L =
∑

ijk

fijk log(πijk), (11)

where πijk are the expected probabilities under a specified model. The fijk

are the observed frequencies. The simple model we will study is that the
expected probabilities are given by

πijk = exp(−d2
ijk), (12)

that is the expected probabilities are related to distances in Euclidean space
by the Gaussian transform. The larger the distance the smaller expected
probability; the smaller the distance the larger the expected probability. If
a combination of categories often occur the categories are close in Euclidean
space, which is in line with our assumption that frequencies are a measure of
similarity.

If we insert our model into the likelihood function we obtain

L = −
∑

ijk

fijkd2
ijk. (13)



We will use different distance models and develop the likelihood function.
This will give a more detailed view on triadic distance models as developed
by now.

3.1 Triadic unfolding models
For unfolding models we saw in the previous section that the distance can

be written as

d2
ijk(X;Y;Z) = trST AijkS. (14)

Inserting this definition in the log-likelihood function (13), and developing
we obtain

Lu = −
∑

ijk

fijk × trST AijkS

= trST CuS, (15)

where

Cu =



−2Fi Fij Fik

FT
ij −2Fj Fjk

FT
ik FT

jk −2Fk


 . (16)

Here Fij is a two-way matrix obtained by summing the three-way table over
the third way k, and similarly for the other marginal arrays, Fi denotes the
diagonal matrix with elements fi++.

The matrix Cu has the same form as the Burt matrix that is decomposed
in Multiple Correspondence Analysis (MCA) (Greenacre, 1984; Gifi, 1990).
For the triadic unfolding model the diagonal blocks have matrices defined
by minus two times the univariate margin, where in MCA the margin itself
is used. However, there has been a discussion lately about these diagonal
blocks (Greenacre, 1988; Boik, 1996; Tateneni and Brown, 2000). A new
method called Joint Correspondence Analysis (JCA) is devised to reduce the
influence of the diagonal blocks on the result of MCA. Further research could
be done in the field of correspondence analysis whether the replacement of
the diagonal blocks as proposed here would add to the understanding of the
method. At least then the interpretation of MCA can be done in terms of
triadic Euclidean distances.

3.2 Triadic slide vector models
The triadic unfolding model could be written as a trace function. The

slide vector models and the symmetric model are restricted unfolding models,
where the restriction has the form S = ER. We will use these restrictions in
our development of the likelihood function.



Inserting S = E2R in the likelihood function for the triadic unfolding
model (15) we obtain the likelihood function for the slide-2 model, that is

Lsv2 = trRT ET
2 CuE2R

= trRT Csv2R, (17)

where Csv2 has the form

Csv2 =




Cs n1 n2

nT
1 −2f+++ −f+++

nT
2 −f+++ −2f+++


 , (18)

in which the vector n1 has elements {n1
i } defined by n1

i = f++i+f+i+−2fi++,
and the vector n2 has elements {n2

i } defined by n2
i = 2f++i − f+i+ − fi++.

The matrix Cs has elements {cs
ij} defined by cs

ij =
∑

k gijk if i 6= j, else cs
ij =∑

j cs
ij , and the gijk are given by gijk = 1

6 (fijk +fikj +fjik +fjki+fkij +fkji).
Using the same steps as above, the likelihood function for the slide-1

model is given by

Lsv1 = trRT ET
1 CuE1R

= trRT Csv1R, (19)

where Csv1 has the form

Csv1 =
(

Cs n3

nT
3 −6f+++

)
, (20)

in which n3 has elements {n3
i } defined by n3

i = 3(f++i − fi++).
For the symmetric generalized Euclidean model the design matrix E0 can

be used and the likelihood function obtains the following form

Ls = trRT ET
0 CuE0R

= trRT CsR. (21)

The matrix Cs is the same as above in the likelihood functions for the triadic
slide vector models. The matrix R in this case is equal to the coordinate
matrix X.

Both the slide-1 and the slide-2 model will fit the same coordinate matrix
as the symmetric triadic distance model, corresponding to the matrix Cs.
The slide-1 model represents in addition the difference between the third
margin and the first margin. The slide-2 model represents two differences:
(1) The difference of the first margin compared with the second and the third
margin; (2) The difference of the third margin compared with the first and
the second margin.

We can compare these models to quasi-symmetry models for three-way
tables. The quasi-symmetry model for three-way tables is given by

log(πijk) = λ + λR
i + λC

j + λP
k + λijk, (22)



where λijk = λikj = λjik = λjki = λkij = λkji, i.e., the interaction term is
three-way symmetric. In the triadic slide vector models the symmetric part is
modeled by the distances between the points in Euclidean space given in the
coordinate matrix X. The main effect terms λR

i , λC
j , and λP

k represent the
occurences of each of the categories. In the generalized slide vector models the
differences of these main effect parameters are represented by vectors, which
are attached to the dimensions of the Euclidean space. This does give us a
nice representation of, for example, the trends in longitudinal research. For
the symmetric generalized Euclidean model we find no marginal differences,
i.e., the model is equal to the model of three-way symmetry with metric
constraints.

4. Conclusions
We studied triadic distance models under a Multinomial sampling scheme.

For the triadic unfolding model we found an interesting relationship with
MCA. In MCA the distances between points are defined via the underlying
subject points. In triadic unfolding models we have a direct distance defi-
nition between the three points. In both models no three-way information
is represented (see De Rooij, 2001, submitted), which is clear from the Burt
matrix and the matrix obtained in (16). This might be a disadvantage of
both procedures in case three way relations are of specific interest. However,
many multivariate data anayses techniques only consider bivariate relation-
ships and these bivariate relationship are often more interesting compared to
the trivariate or higher order relationships. An advantage of looking only at
bivariate relationships is that large tables can be handled without many com-
plications. In log-linear analysis, for example, one should always be careful
analyzing large sparse tables.

Distance models for three-way two-mode data, as the well known IND-
SCAL model (Carroll and Chang, 1970) do represent three-way relationships
(see De Rooij, 2001). In the INDSCAL model, however, only one of the three
bivariate relationships has a distance representation. The other two bivariate
relationships are hard to grasp from the results of the model. Moreover, the
INDSCAL model has a very specific interpretation, which is only nice when
there is a specific interest in differences between individuals or groups of in-
dividuals. Many three-way contingency tables do not have that nature, and
in that case our triadic distance models have a more natural interpretation.
It would be interesting to combine the two approaches, that is a topic of
current research.

References:
Boik, R. J. (1996), “An efficient algorithm for joint correspondence analysis,” Psy-

chometrika, 61, 255-269.



Carroll, J. D., and Chang, J. J. (1970), “Analysis of individual differences in multi-

dimensional scaling via an N-way generalization of ‘Eckart-Young’ decomposition,”

Psychometrika, 35, 283-319.

Cox, T. F., Cox, M. A., and Branco, J. A. (1991), “Multidimensional scaling for n-

tuples,” British Journal of Mathematical and Statistical Psychology , 44, 195-206.

Daws, J. T., (1996), “The analysis of free-sorting data: Beyond pairwise cooc-

curences,” Journal of Classification, 13, 57-80.

De Rooij, M. (2001, submitted), “Distance models for three-way tables and three-

way information: a theoretical note,”

De Rooij, M., and Heiser, W. J. (2000), “Triadic distance models for the analy-

sis of asymmetric three-way proximity data,” British Journal of Mathematical and

Statistical Psychology , 53, 99-119.

Gifi, A. (1990), Nonlinear multivariate analysis. Chichester, England: Wiley.

Greenacre, M. J. (1984), Theory and applications of correspondence analysis. New

York: Academic Press.

Greenacre, M. J. (1988), “Correspondence analysis of multivariate categorical data

by weighted least squares,” Biometrika, 75, 457-467.

Hayashi, C. (1972), “Two dimensional quantifications based on a measure of dissim-

ilarity among three elements,” Annals of the Institute of Statistical Mathematics,

25, 251-257.

Heiser, W. J., and Bennani, M. (1997), “Triadic distance models: Axiomatization

and least squares representation,” Journal of Mathematical Psychology , 41, 189-

206.
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