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Abstract

Maximum likelihood estimation of mixed effect baseline category logit models

for multinomial longitudinal data can be prohibitive due to the integral dimension

of the random effects distribution. We propose to use multidimensional unfolding

methodology to reduce the dimensionality of the problem. As a by product readily

interpretable graphical displays representing change are obtained. The method-

ology can be applied to both nominal as well as ordinal response variables. Re-

lationships to standard statistical models for multinomial data will be presented.

Several empirical examples will be given to show the merits of the proposed mod-

eling framework.

Key-Words: Categorical data; Longitudinal data; Gauss-Hermite quadrature; Multi-

level model; Multidimensional Scaling; Multidimensional Unfolding.
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1 Introduction

In this paper we will present a new methodology for multinomial longitudinal data. Such

data are often collected in social and medical sciences. An important class of models for

longitudinal data are the mixed effects models, also called multilevel models for change

(Singer and Willett, 2003). For multinomial data, however, the main representative of

this class has several problems, as elaborated below. With the new methodology we

aim to solve these problems. We start this introduction by showing three examples of

empirical data that will be used to present our methodology, followed by an extensive

problem formulation on the basis of one of the examples.

1.1 Longitudinal multinomial data

Consider, as a first detailed example, data from the McKinney Homeless Research Project

in San Diego as described in chapters 10 and 11 in the book by Hedeker and Gibbons

(2006). The aim of this project was to evaluate the effectiveness of using an incentive as

a means of providing independent housing to homeless people with severe mental illness.

Housing certificates were allocated to local authorities in San Diego by the Department

of Housing and Urban Development. These housing certificates were designed to make it

possible for individuals with low income to choose and obtain independent housing in the

community. A sample of 361 individuals took part in this longitudinal study and were

randomly assigned to the experimental or control condition. Eligibility for the project

was restricted to individuals diagnosed with a severe and persistent mental illness who

were either homeless or at high risk of becoming homeless at the start of the study.

Individuals’ housing status was assessed using three categories (living on the street /

living in a community center / living independently) at baseline and at 6, 12, and 24

month follow up.

In the second example (data can be found in Adachi (2000)) 49 male and 51 female

Japanese undergraduates were followed from the age of 6 to 20. At five time points they

were asked which of six TV program categories they liked best. The five time points

are the first year of elementary school (ages 6-7), the fourth year of elementary school

(ages 9-10), first year of junior high school (ages 12-13), first year of high school (ages

15-16), and as university freshmen (ages 18-20). The six TV program categories were:
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Animation (A), Cinema (C), Drama (D), Music (M), Sport (S), and Variety (V). In this

case the response variable had six categories and was measured at five time points. There

was one background variable, gender.

Although our focus will primarily be on models for unordered (nominal) categorical

response variables, they are also applicable to ordinal multinomial data. In the third

example (data were described in Hedeker and Gibbons (2006)) 437 schizophrenic patients

were randomly assigned to receive one of four medications: placebo, chlorpromazine,

fluphenazine, or thioridazine. Patients were measured at weeks 0, 1, 3, and 6. The

observed response variable had four ordered categories: (1) normal or borderline mentally

ill, (2) mildly or moderately ill, (3) markedly ill, and (4) severely or among the most

extremely ill. The main question was whether there is a differential change across time

for the treatment group (chlorpromazine, fluphenazine, and thioridazine) relative to the

placebo group. Various descriptive statistics can be found in Hedeker and Gibbons (2006).

1.2 Notation and data format

Before we discuss modeling the type of data presented above, we introduce some nota-

tion. A sample consists of n subjects and for each subject i (i = 1, . . . , n) there are

measurements on ni occasions. Let Git denote the t-th observation (t = 1, . . . , ni) for

subject i, with Git = c (c = 1, . . . , C) and response probabilities πitc = P (Git = c). Fur-

thermore let git be the corresponding vector git = [git1, . . . , gitC ]T with gitc = 1 if subject

i at time point t belongs to/chooses/is diagnosed as category c (c = 1, . . . , C) and gitc = 0

otherwise. For every subject at every time point there are p explanatory variables xitj ,

j = 1, . . . , p. The general layout of the data as used in this paper is shown in Table 1.

The data are in so-called person-time format where for each subject on a specific time

point the data are given on a single row of the matrix. This data format is common for

mixed effects models.

1.3 Mixed effects multinomial baseline category logit models

One important class of models for longitudinal data are the mixed effects models, also

known as multilevel models, random effects models, or subject specific models. For

nominal response data the Multinomial Baseline Category Model (MBCL, Agresti (2002))

is a standard regression model. The mixed effects MBCL model (Hartzel, Agresti and
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Table 1: The data format

Subject Time Response Explanatory variables
1 1 G11 x111 x112 x113 . . . x11p

1 2 G12 x121 x122 x123 . . . x12p

...
...

...
...

...
...

...
...

1 n1 G1n1
x1n11 x1n12 x1n13 . . . x1n1p

...
...

...
...

...
...

...
...

i t Git xit1 xit2 xit3 . . . xitp

...
...

...
...

...
...

...
...

n nn Gnnn
xnnn1 xnnn2 xnnn3 . . . xnnnp

Caffo, 2001; Hedeker, 2003) is the generalization of the MBCL model with random effects

and is the main representative of the class of mixed effects models. For the mixed effects

MBCL model the conditional distribution of git given a set of subject specific parameters

ui, f(git|ui), is the multinomial distribution with expectation

E(git|ui) = πit = [πit1, . . . , πitC ]T.

The probabilities (πitc) are related to a linear predictor (ηitc) by the vector of link functions

hl(·), i.e.

πit = hl(ηit),

and hl(·) = [hl1(·), . . . , hlC(·)], where hlc(·) is

hlc(ηit1, . . . , ηitC) =
exp(ηitc)

∑

h exp(ηith)
.

The c-th linear predictor is given by

ηitc = αc + xT

itβc + zT

ituic,

where xit is the design vector for the fixed effects, zit is the design vector for the random

effects, and αc, βc are fixed effect parameters (see the next section for a detailed example

of xit and zit). In order to identify the model, one set of parameters is fixed to zero, that

is α1 = 0, β1 = 0, and ui1 = 0. A multivariate normal distribution is assumed for the
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random effects, that is

uic ∼ N(0,Σ), c = 2, . . . , C.

Conditional on the random effects it is assumed that the observations for each subject are

independent. To obtain maximum likelihood estimates both Hartzel, Agresti and Caffo

(2001) and Hedeker (2003) use Gauss-Hermite quadrature procedure to approximate the

likelihood function (see Section 3.2) .

1.4 Application of the mixed effects MBCL model

The McKinney Homeless Research Project (MHRP) data (first example above) are ana-

lyzed here with the mixed effects MBCL model. In Hedeker and Gibbons (2006) propor-

tions for each of the three response categories at the four time points are given for the

experimental and control group. Hedeker and Gibbons (2006) show that some propor-

tions first go up and then go down and other proportions first go down and then go up.

Moreover, the proportions for the two groups are rather different. This information led

us to define a model with different quadratic time trends for the two groups and random

intercepts. The linear predictor for this model equals

ηitc = αc + β1cGi + β2cTit + β3cT
2
it + β4cGiTit + β5cGiT

2
it + uic,

where Gi is an indicator for group membership (Gi = 1 for incentive) for participant i,

and Tit represents the time variable with Month - 10. In this model the design vector for

the fixed effects is xit = [Gi, Tit, T
2
it, GiTit, GiT

2
it]

T, and the design vector for the random

effects is zit = [1]. The parameter estimates for this model are given in Table 2. It can

be seen that for both contrasts (community versus street and independent versus street)

the time effect is positive but the quadratic time effect is negative. These estimates give

the development over time for the control group. For the experimental group, which

did receive the incentive, parameter estimates have to be combined in order to find

the development over time. The time effect in the contrast community/street equals

0.1599+ (−0.0862) = 0.0737 and the squared time effect is −0.0144+0.0077 = −0.0067.

In a similar way the effects for the other contrast can be found. For both contrasts

there is a random intercept with standard deviations of 1.52 and 2.30, respectively. The
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Table 2: Parameter estimates of the mixed effects MBCL model for the MHRP data. In
the C/S column the parameter estimates for the community versus street contrast are
given, whereas in the I/S column estimates for the contrast independent versus street are
given. The correlation between the two random intercepts equals 0.692.

Effect C/S SE I/S SE
Constant 2.4358 0.3007 1.2932 0.3627
Time 0.1599 0.0187 0.2363 0.0240
Time Squared -0.0144 0.0023 -0.0154 0.0027
Incentive -0.9138 0.4199 2.0720 0.4854
Incentive × Time -0.0862 0.0247 0.0216 0.0308
Incentive × Time squared 0.0077 0.0032 -0.0075 0.0037
Standard deviation 1.5190 0.1992 2.2993 0.2251

correlation between the random intercepts equals 0.692.

1.5 Problems with mixed effects MBCL models

Several problems with the mixed effects MBCL models are noted in the literature:

1. These models may become computationally very intensive when there are two or

more random effects, and computationally unfeasible when there are more than

five or six random effects (Hartzel, Agresti and Caffo, 2001). The reason is that

the integrals appearing in the likelihood function must be solved using approxi-

mation methods, such as linearization methods, numerical integration methods, or

simulation methods. For the baseline category logit random effects model with

only random intercepts, the integral dimension equals the number of categories of

the response variable minus one. If the number of classes is larger than six these

quadrature methods are computationally unfeasible. Moreover, if in addition to

random intercepts, random slopes are envisaged, the number of categories should

not exceed three.

2. These models rely on the untestable assumption that random coefficients come from

a multivariate normal distribution. Results may be biased when this assumption is

violated (Vermunt, 2007; Aitkin, 1999).

3. It is not at all straightforward to interpret the parameters associated with the

random effects (Vermunt, 2007).
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4. The interpretation of regression coefficients is not simple, especially in cases with in-

teractions and/or higher order treatment of variables. The interpretation is further

complicated because the coefficients refer to contrasts of categories of the response

variable with a baseline category (Fox and Andersen, 2006).

In the literature several ways have been proposed to deal with these problems, ei-

ther simultaneously or separately. To deal with the first problem Bock (1972), Skron-

dal and Rabe-Hesketh (2003), and Takane (1996) use dimension reduction techniques,

whereby the first two use an inner product parametrization and Takane uses a distance

parametrization. Another approach to simultaneously deal with problems 1, 2, and 4

is to use categorical latent variables as in latent Markov models with or without ex-

planatory variables (Langeheine and Van der Pol, 1990, 1994; Vermunt, Langeheine, and

Böckenholt, 1999) or latent class growth curve models (Vermunt, 2007). To deal with

problem 4, Fox and Andersen (2006) propose effect displays.

In the next Section we propose the mixed effects trend vector model to deal with

problems 1, 3, and 4. This model is a generalization of the the ideal point classification

model (IPC model, De Rooij (2009a)), a probabilistic multidimensional unfolding model

for nominal response variables. This is a generalization of the approach of Takane (1996)

in the sense that he used random intercepts only and not random slopes or fixed effect

parameters.

2 The mixed effects trend vector model

The trend vector model is an extension of the IPC model (De Rooij, 2009a,b) for longi-

tudinal data. The IPC model is a probabilistic multidimensional unfolding model where

the probability of belonging to a category is a monotonically decreasing function of the

relative squared Euclidean distance between the position of a subject and that of a cat-

egory, compared to the squared distances towards the other categories. The position

of a subject at a specific time point is given by a linear combination of the explana-

tory variables. In the unfolding literature, these variables are sometimes called auxiliary,

supplementary, or concomitant variables. In line with the generalized linear model lit-

erature we will continue to call them explanatory variables. When time is one of the

main explanatory variables the model is coined the trend vector model. In De Rooij
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(2009b) the trend vector model was first proposed. This model was a marginal model

modeling the population averaged trend over time and treating the dependencies among

the observations as a nuisance. Yu and De Rooij (2009) discuss model selection issues

for this marginal model. For a comparison of marginal and subject specific models see

Diggle, Heagerty, Liang, and Zeger (2002) and Molenberghs and Verbeke (2005). In this

paper we will extend the trend vector model with random effects in order to obtain a

subject specific model, that is a model where each subject has its own trend over time.

This is an important generalization because a random effects model provides insight into

how specific individuals change across time. Moreover, the inclusion of random effects

accounts for the influence of participants on their repeated observations. The random

effects thus describe each person’s trend over time and explain the association structure

of the longitudinal data. Additionally, they indicate the degree of subject variation that

exists in the population of participants (Hedeker and Gibbons, 2006).

2.1 Formal model definition

Like we did for the mixed effects MBCL model, here we also assume that the conditional

distribution of git given the subject specific parameters ui, f(git|ui), is the multinomial

with expectation

E(git|ui) = πit = [πit1, . . . , πitC ]T.

The probabilities are related to squared Euclidean distances (δit) by the vector of link

functions hd(·), i.e.

πit = hd(δit),

with

δit = [δit1, . . . , δitC ]T,

and hd(·) = [hd1(·), . . . , hdC(·)], where hdc(·) is the Gaussian decay function

hdc(δit1, . . . , δitC) =
exp(−δitc)

∑

h exp(−δith)
. (1)
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The squared distance δitc is a so-called unfolding or two-mode distance in M-dimensional

Euclidean space between a position (known as ideal point in the multidimensional un-

folding literature) for subject i at time point t with coordinates ηitm (m = 1, . . . , M) and

a point for category c with coordinates γcm; more specifically

δitc =
M

∑

m=1

(ηitm − γcm)2. (2)

The coordinates for the position of subject i at time point t on the m-th dimension are

given by the linear predictor

ηitm = αm + xT

itβm + zT

ituim. (3)

We assume a multivariate normal distribution for the random effects, that is

ui ∼ N(0,Σ).

2.2 Model interpretation

For interpretation of the model graphical displays are used like those in multidimensional

unfolding. In such a display every individual at every time point has a position (in the

unfolding literature this is often called an ideal point). The relative squared distance from

this position towards the class points represents the probability for that class, as can be

seen from the model formulae (Equations 1 and 2). The odds that a specific subject i at

time point t chooses category a instead of b are given by exp(δitb − δita): the odds are in

favor of the closest category. To make interpretation easier, we make prediction regions

in the Euclidean space. For every class this prediction region represents that part of the

space where the probability of the corresponding class is highest. The class point itself is

within the prediction region. On the boundaries, the (log) odds for two classes are even.

The coordinates of the position of a subject at a given time point are a linear com-

bination of the explanatory variables (αm + xT

itβm) plus a random part (zT

ituim). In the

examples discussed in the Introduction there are multiple groups that may follow different

trajectories over time. The mean trajectory of a group is given by the fixed part of the

linear model, whereas the departure of individuals from their group mean is represented
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by the random effects.

We will draw the group mean trajectories using trend vectors. The procedure will be

exemplified using the housing example of the introduction. The coordinates on dimension

m are given by the following linear predictor

ηitm = αm + β1mGi + β2mTit + β3mT 2
it + β4mGiTit + β5mGiT

2
it + uim.

To draw the trajectory for the control group, with Gi = 0, we compute the vectors

ηm as

ηm = α̂m + tβ̂2m + t2β̂3m

where t is a vector with values within the observed time range, i.e.

t = [0.0, 0.1, 0.2, . . . , 6.0, . . . , 12.0, . . . , 24.0]T and t2 are the element wise squares of the

values of t. The points defined by the coordinates on dimension 1 (η1) and dimension

2 (η2) define a smooth trend vector for the control group. Similarly, for the treatment

group for which Gi = 1

ηm = (α̂m + β̂1m) + t(β̂2m + β̂4m) + t2(β̂3m + β̂5m)

defines a trend vector for the treatment group. It is important that the vector t only has

values within the observed time frame in order to prevent extrapolation. Every point on

the trend vectors represents a time point. For the observed time points (in the MHRP

data 0, 6, 12, and 24) we add markers to the trend vectors. For each marker point we

can look at the distances towards the category points. The closest category point has the

highest probability for an average person in the group corresponding to the trend vector

at that specific time point. The farthest point has the lowest probability. Each subject

has his or her own personal deviation from their group trajectory defined by the random

effects.

To represent the random effects we will use ellipses. We present ellipses that include

68% of the observations, that is our ellipses are defined using major axis equal to the

standard deviations of the random effects. For the models with only random intercepts

the random effects represents changes in starting position, that is every trajectory has
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the same shape. For models including random slopes the shape of the trend vectors will

be different for every subject. In the latter case it can be advantageous to represent all

individual trend vectors, provided this does not clutter the graphical display.

The solutions of the mixed effects trend vector models can be represented in low

dimensional displays. In applications where the categories of the response variable have

an intrinsic meaning or when there are many explanatory variables the dimensions can

be given an interpretation. An example of the first can be found in Spinhoven et.al

(2011) where the response variable consists of nine categories that jointly represent a two

dimensional solution. Here, one dimension can be interpreted as a fear dimension while

the second has a distress interpretation. In cases with many explanatory variables, these

variables can give a substantive interpretation to the dimensions. In many applications,

such as the ones presented in the introduction, there is not enough information to provide

an interpretation of the dimensions. We will refrain from interpreting the dimensions in

this paper. Nevertheless, the graphical representation can be interpreted by looking at

the distances.

2.3 Nominal vs ordinal response variables

Trend vector models can be fitted in one, two, or higher dimensional spaces. In a one

dimensional solution the categories of the response variable lie on a single continuum in a

specific order. If the one dimensional solution is optimal in the sense that it gives the best

goodness-of-fit statistics, the response variable is ordinal with respect to the explanatory

variables. Nominal response variables usually require two or higher dimensional solutions.

For an ordinal response variable (like the one in the third example of the introduction),

the ordinality with respect to the explanatory variables can be investigated using the

trend vector models. The model does not determine the order by itself. The ordinality

can be imposed on, but can also be inferred from the data. Different forms of ordinality

may be assumed:

• Interval: the categories are equally spaced, i.e. γc = γ1 + (c − 1) × τ , with τ > 0;

• Ordinal: the categories are ordered, i.e. γc = γ1 +
∑c

s=2 τs, with τs > 0;

• Unconstrained: the categories are ordered but we do not know the ordering, i.e.

unconstrained estimation of the γc’s.
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In each of these three cases the response variable is ordinal with respect to the explana-

tory variables. For an assumed ordinal variable the relationship with the explanatory

variables does not need to take an ordinal form (just as the relationship between two

continuous variables need not be linear). An advantage of the trend vector model is

that the ordinality assumption can be investigated by extending the model to a two (or

higher) dimensional form. In Section 5.3 we show such an investigation.

3 Fitting the mixed effects trend vector model

In this section we discuss estimation of the mixed effects trend vector model. This can be

done using either maximum likelihood or Bayesian estimation. In Bayesian estimation

prior distributions have to be formulated for all model parameters. With the likelihood

and the priors a posterior distribution can be formulated from which samples can be

drawn, for example using the Gibbs sampler. We will not use this approach here, but focus

on maximum likelihood estimation in order to find estimates of the model parameters

αm, βjm, γcm, and Σ.

3.1 The likelihood function

Define gi to be the vector of length ni × C with the measurements for subject i, that is

gi = [gT

i1, . . . , g
T

ini
]T. Let f(gi|ui; βm, γm) denote the conditional mass function of gi given

the random effects ui. Furthermore, let f(ui;Σ) denote the normal density function for

the random effects. The likelihood function is the probability mass function viewed as a

function of αm, βm, γm, and Σ, i.e. the likelihood function is

L =
∏

i

∫

· · ·

∫

f(gi|ui; βm, γm)f(ui;Σ)dui. (4)

It is assumed that, conditional on the random effects, the responses of a subject are

independent multinomial distributed, so that

f(gi|ui; βm, γm) =

ni
∏

t=1

C
∏

c=1

π
gitc

itc .
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3.2 Approximating the likelihood function

In general no analytical solutions are available for the integrals in (4), hence numerical

approximations are needed. We can either approximate the integrand, the data, or

the integral. For an overview of these three methods see Tuerlinckx et. al (2006) or

Molenberghs and Verbeke (2005). The integrand may be approximated using the Laplace

method, while the data may be approximated using a Penalized (PQL) or Marginal Quasi

Likelihood (MQL) approach. Molenberghs and Verbeke (2005) show that these latter two

perform poorly with binary response data. For multinomial data we do not expect the

performance of PQL and MQL to be better.

When the integral is approximated this can be done directly using (adaptive) quadra-

ture methods or Monte Carlo integration or indirectly using the EM-algorithm (see Tuer-

linckx et. al , 2006), where in the E-step again quadrature or Monte Carlo integration is

needed. We take the direct approach using Gauss-Hermite quadrature. In this method

the integral is replaced by a weighted summation over a set of nodes. The more nodes

used, the better the approximation of the likelihood, but the slower the algorithm. For

details see again Tuerlinckx et. al (2006), Molenberghs and Verbeke (2005), or Hartzel,

Agresti and Caffo (2001). The approximated likelihood is maximized using a quasi-

Newton algorithm.

3.3 Indeterminacies

The trend vector model, as presented so far, is not identified. First of all, as in any

distance model, there is a translation and a rotation problem. A third indeterminacy,

due to the Gaussian decay function, is that a constant might be added for each subject’s

squared distance without changing the probabilities, that is

hc(δit1, . . . , δitC) =
exp(−δitc)

∑

h exp(−δith)
=

exp(−δitc + sit)
∑

h exp(−δith + sit)
,

which is a type of scaling problem. These three indeterminacies can be solved by fixing

class point coordinates. First, to solve the translational indeterminacy we set γ1m = 0.

The rotational indeterminacy is solved by setting γm,m+1 = 0 and the scaling indetermi-

nacy by setting γm+1,m = 1. For two and three dimensional solutions the matrix with
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class coordinates then have the following forms

2D :





























0 0

1 0

γ31 1

γ41 γ42

...
...

γC1 γC2





























, 3D :





























0 0 0

1 0 0

γ31 1 0

γ41 γ42 1
...

...
...

γC1 γC2 γC3





























.

When C = 3 and M = 2 we need one more constraint, i.e. γ31 = 0. For the case

C = 4 and M = 3 we need three more constraints: γ31 = γ41 = γ42 = 0. Both are full

dimensional solutions in which no class point coordinates have to be estimated.

There are other sets of possible identification constraints. Instead of setting a single

category coordinate per dimension equal to zero we could fix the mean of the coordinates

as equal to zero. Furthermore we could constrain the variance of the coordinates to

equal 1, and the coordinates of any dimension to be uncorrelated with those of another

dimension. Such sets of constraints are more difficult to incorporate.

3.4 Empirical Bayes estimation of random effects

Prediction of the random effects can be done using expected a posteriori (EAP) or em-

pirical Bayes estimation, where the expectation of the random effect value for subject i

is given by

E(ui|gi, β̂m, γ̂m, Σ̂) =

∫

· · ·
∫

uif(gi|ui; β̂m, γ̂m)f(ui; Σ̂)dui
∫

· · ·
∫

f(gi|ui; β̂m, γ̂m)f(ui; Σ̂)dui

.

Like before, the integrals can be approximated using Gauss-Hermite quadrature methods.

3.5 Software

All models as described above can be estimated using the NLMIXED procedure in SAS. In

the appendix annotated code is presented for the models shown in Section 5.
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4 Comparison with other models

In this section we compare the trend vector model (or more generally the IPC model) to

some well known logit models. The focus is on the IPC model, because in the comparison

between models the time variable does not play an important role.

4.1 MBCL model

For this first comparison we leave out the random effects for the moment, and make a

small change to the definition of the IPC model

hdc(δit1, . . . , δitC) =
exp(−1

2
δitc)

∑

h exp(−1
2
δith)

.

which does not change the model fit nor display. In maximum dimensionality, i.e.

M = C − 1 the IPC model is equivalent to the MBCL model. Using the identifica-

tion constraints as proposed in Section 3.3 we have that αI
0m − 1

2
= αB

0c and βI
m = βM

c ,

where the superscript I identifies the parameters from the IPC model and the superscript

B that of the MBCL model. The IPC model can thus be used as a visualization model

for the MBCL model.

The same reasoning is true when both models are augmented with random effects.

The identification constraints are placed on the class points and the random effects IPC

model can be used as a visualization tool for the random effects MBCL model. Such a

visualization solves problems 3 and 4 as discussed in the introduction, and is shown in

Section 5.1.

4.2 Proportional odds model

An important model for ordinal data is the proportional odds logit model (McCullagh,

1980). In the proportional odds logit model (POM) the probabilities are related to a

linear predictor by the vector of link functions hp(·), i.e.

πit = hp(ηit),
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and hp(·) = [hp1(·), . . . , hlp(·)], where hpc(·) is

hp1(ηit1, . . . , ηitC) =
exp(ηit1)

1 + exp(ηit1)

hpc(ηit1, . . . , ηitC) =
exp(ηitc)

1 + exp(ηitc)
−

exp(ηit(c−1))

1 + exp(ηit(c−1))
, c = 2, . . . , C.

In this model the linear predictor is defined as

ηitc = αc + xT

itβ + zT

itui.

An important feature of the fixed effects (i.e. without random effects) proportional odds

logistic model is the simple form of the cumulative odds ratio. That is, the odds of

making response ≤ c at xit = x1 are exp((x1 − x2)
Tβ) times the odds at xit = x2, or in

other words, proportional to the signed distance between x1 and x2 and independent of

c.

For our fixed effects IPC model the odds (not the cumulative odds) for choosing

category a over b at xit = x1 are

exp
{

2(x1 − x2)
Tβ(γa − γb)

}

times the odds at xit = x2, i.e. the odds ratio depends on the signed distance between

x1 and x2 and the signed distance between γa and γb. If the signed distances between

consecutive categories are all equal (the interval case in Section 2.3), the odds ratio only

depends on the distance between x1 and x2. If the response categories are not equally

spaced the distance between two category points co-determine this odds ratio.

The ideal point parametrization has some interpretational advantages over the pro-

portional odds model. For instance, the location at which the odds changes from being

in favor of one response category to another is exactly in the middle of the two category

locations. Each category has at least a single position where it is most probable, unless

two (or more) category coordinates are equal. Furthermore, the ideal point model is a

model for the probabilities of each outcome, whereas the proportional odds model is a

model for cumulative probabilities; the former is easier to comprehend.

The proportional odds model is sometimes thought to be too restrictive, i.e. the

proportional odds assumption might not be valid for some variables. To deal with such
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a situation the partial proportional odds model was proposed by Peterson and Harrell

(1990). A serious disadvantage of this model is that it can lead to negative values of the

response probabilities (Hedeker and Gibbons, 2006, p.192). As shown above the ideal

point model is not as strict as the proportional odds logistic model, but still the ordinality

assumption might be too coarse for some explanatory variables. Our model can also be

fitted in two (or more) dimensions to investigate disordinalty.

4.3 Stereotype model

Another model for ordinal data which can be generalized to nominal data is proposed by

Anderson (1984) under the name stereotype model. Johnson (2007) recently extended the

stereotype model to a random effects model. In the stereotype model the probabilities are

related to a linear predictor by the same vector of link functions as used in the baseline

category logit model (hl(·)), i.e.

πit = hl(ηit),

and hl(·) = [hl1(·), . . . , hlC(·)], where hlc(·) is

hlc(ηit1, . . . , ηitC) =
exp(ηitc)

∑

h exp(ηith)
.

The c-th linear predictor is given by (see Johnson, 2007)

ηitc = αc − xT

itβφc + zT

itui, or

ηitc = αc − xT

itβφc + zT

ituic.

Under this model the regression weights βc = −βφc are parallel. To achieve an ordinal

model the φc should be ordered, i.e. 1 = φ1 > φ2 > . . . > φC .
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Our one dimensional trend vector model can be rewritten as follows

πitc =
exp (−(ηit − γc)

2)
∑

h exp (−(ηit − γh)2)

=
exp (−η2

it − γ2
c + 2ηitγc)

∑

h exp (−η2
it − γ2

h + 2ηitγh)

=
exp (−γ2

c + 2ηitγc)
∑

h exp (−γ2
h + 2ηitγh)

=
exp

(

−γ2
c + 2(α + xT

itβ + zitui)γc

)

∑

h exp
(

−γ2
h + 2(α + xT

itβ + zitui)γh

)

=
exp

(

−γ2
c + 2αγc + 2xT

itβγc + 2zituiγc

)

∑

h exp
(

−γ2
h + 2αγh + 2xT

itβγh + 2zituiγh

)

=
exp

(

α∗
c + 2xT

itβγc + 2zituiγc

)

∑

h exp
(

α∗
h + 2xT

itβγh + 2zituiγh

) ,

where α∗
c = −γ2

c + 2αγc. The last equation shows that the trend vector model is closely

related to the stereotype model.

5 Empirical Examples

We analyzed the three data sets described in the introduction. The first (MHRP data)

will be used as an example of the trend vector model as a visualization tool for the mixed

effects MBCL model. The second example, on the TV watching preferences, shows that

for this data we can fit mixed effects trend vector models. This would be impossible with

the mixed effects MBCL model due to the number of random effects. The final example

shows that we can test the ordinality assumption for ordinal response variables.

To compare models several fit indices will be given. First the deviance is presented

(-2 times the Log likelihood) together with the number of fitted parameters (npar).

Furthermore information criteria are used to compare models. The BIC statistic defined

by

BIC = −2 × LL + log(n) × npar,

where n is the number of subjects and LL the log likelihood. The AIC statistic

AIC = −2 × LL + 2 × npar,
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and the AICC which is the AIC with a second order correction for small sample sizes

AICC = AIC +
2k(k + 1)

n − k − 1
,

where k = npar + 1. Note that, because we set up the data in ungrouped format (see

Agresti, 2002, pp. 174-175) we cannot use the deviance as a model test. Moreover, for

such a set-up there is no sensible saturated model.

5.1 Housing example: graphical representation of MBCL model

Figure 1 gives the solution corresponding to the analysis shown in the introduction. The

trend vector for both the incentive and the control group is presented. Small circles

represent the time points 0, 6, and 12 months and the vector ends at 24 months. These

vectors represent the fixed effects of the model and can be interpreted as follows. The

starting point of the two groups and the quadratic time trend both differ. The starting

point for the incentive group is already somewhat favorable. Furthermore, we see that the

incentive group quickly moves into the Independent housing region, whereas the control

group moves into the community house region and only at the end of the study gets

closer to the independent housing region. The joint influence of time and time squared

for both groups can be easily understood from the graph, whereas it is quite difficult to

obtain a thorough understanding from the parameter estimates themselves (see Table 2).

The ellipse represents a 68% region for the random intercepts. The very large ellipse

means that there are large differences in individual starting points. The trends are,

however, homogeneous for all participants (no random effect of time). These differences

in starting point dominate the solution in the sense that the differences in starting point

are much larger than the trends over time. More specifically, for someone who has his/her

starting point at the lower right of the space the trend vector follows a trajectory within

the community housing region, while for someone in the upper left corner of the space

the trajectory will be within the independent housing region. This large variation in the

intercepts also means that there is a large positive association among the responses of

every individual, i.e. participants tend to be in the same category at consecutive time

points.

Both the nature of development over time as well as the influence of the random
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Figure 1: Visualization of the random intercept quadratic trend MBCL model for the
McKinney Homeless Research Project. The two trend vectors represent the trajectories
for the incentive and control group. The dots on the trend vectors represent T = 0, 6, 12,
and the trend vector ends at T = 24. The ellipses represents approximate 68% regions of
the random intercepts, i.e. variation in starting points. I stands for Independent, C for
Community housing, and S for Street.

intercepts are clear from Figure 1 but cannot easily be grasped form the parameter

estimates in Table 2.

5.2 TV watching example: Individual differences in change pat-

terns

Here the results of the analyses of the TV preference data from Adachi (2000) are given.

We constructed a time variable T by using the midpoints of the ages at the specific time

points as scores (i.e. 6.5 for the first time point, 9.5 for the second, etc) and centered

around the mean (12.25). The question is whether boys and girls (G) differ in their

trends in watching behavior and what the trends look like.

For the random intercept and slope model we will distinguish between three structures

for the covariance matrix of the random effects: The full structure (f), the dimension
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wise structure (d) and the intermediate (i) structure. In the dimension wise structure the

random effects of the first dimension are assumed to be uncorrelated with those of the

second dimension. For the intermediate structure we assume zero correlation between

the random intercept of dimension 1 (2) and the random slope of dimension 2 (1). The

structures are defined as

Σf =












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

σ2
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,

where σ2
1 represents the random intercept of the first dimension, σ2

2 the random slope of

the first dimension, σ2
3 the random intercept of the second dimension, and σ2

4 the random

slope of the second dimension. In Table 3 fit statistics are given for a series of models in

two dimensions.

The various model fit indices indicate different best models. The BIC points towards

the model with linear predictor

ηitm = αm + β1mG + β2mTit + u0i.m + u1i.mTit,

i.e. a random intercepts and slopes model with fixed gender and homogeneous linear

time effect (i.e. no interaction). The AIC selects a more complex model with the linear

predictor given by

ηitm = αm + β1mG + β2mTit + β3mT 2
it + β4mGTit + β5mGT 2

it + u0i.m + u1i.mTit,

a model with different quadratic trends for boys and girls plus random intercepts and

slopes.

To compare these two models we computed residuals to verify the fit of the two

models. Therefore, we first define the Pearson residuals

χ2
it =

(

1 − πit(1)(xit)
)

πit(1)(xit)

where πit(1)(xit) denotes the probability for the actual chosen category, and the deviance
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Table 3: Fit statistics for Adachi TV data. I represents random intercepts model, while
I+S represents the random intercepts and slopes model. G is the gender variable and T

the time variable. T |G represents an interaction between the time and gender variable
plus their main effects. The number of fitted parameters is given under npar, -2LL is
the deviance, BIC the Bayesian Information Criterium, AIC is Akaike’s Information
Criterion, and AICC is the small sample bias corrected version of AIC.

Random Structure Fixed npar -2LL BIC AIC AICC
I Independence G + T 15 1244.0 1313.1 1274.0 1275.4

Correlated G + T 16 1244.0 1317.7 1276.0 1277.5
Independence G + T + T 2 17 1242.5 1320.8 1276.5 1278.2
Correlated G + T + T 2 18 1229.6 1312.5 1265.1 1267.5
Independence G + T |G 17 1241.8 1320.1 1275.8 1277.5
Correlated G + T |G 18 1240.4 1323.3 1276.4 1278.3
Independence G + T |G + T 2|G 21 1233.4 1330.1 1275.4 1278.0
Correlated G + T |G + T 2|G 22 1220.4 1321.7 1264.4 1276.2

I+S Dim. wise G + T 19 1224.1 1311.6 1262.1 1264.2
Intermediate G + T 21 1212.7 1309.4 1254.7 1257.2
Full† G + T 23 1206.1 1312.0 1252.1 1255.2
Dim. wise G + T + T 2 21 1215.4 1312.1 1257.4 1260.0
Intermediate G + T + T 2 23 1207.7 1313.7 1253.7 1256.8
Full G + T + T 2 25 1205.8 1320.9 1255.8 1259.5
Dim. wise G + T |G 21 1222.2 1318.9 1264.2 1266.8
Intermediate G + T |G 23 1212.5 1318.4 1258.5 1261.6
Full G + T |G 25 1204.8 1319.9 1254.8 1258.5
Dim. wise G + T |G + T 2|G 25 1201.6 1316.8 1251.6 1255.3
Intermediate G + T |G + T 2|G 27 1201.5 1325.9 1255.5 1259.8
Full G + T |G + T 2|G 29 1199.5 1333.1 1257.5 1262.5

† SAS gives the following warning: The final hessian matrix is full rank but has at least one

negative eigenvalue. Second order optimality condition violated.

residuals d2
it = 2 log(1+χ2

it) (Lesaffre and Albert, 1989). In Figure 2 we show the normal

probability plots for the two models. On the left hand plot the deviance residuals are

shown for the model with homogeneous linear trends; in the middle plot they are shown

for the model with heterogeneous quadratic trends. On the right hand side a quantile-

quantile plot is shown with the deviance residuals of the first against the second model.

Both models do not seem to fit well, moreover, the more complex model does not

have a better fit. There are probably important missing covariates that can explain

TV watching in more detail. The high residuals are for those participants with changes

forth and back between two categories. For example, a participant with observed pattern

D,M,S,V,S has a very high residual for the fourth observation (V), and another partici-
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Figure 2: Normal probability plots with deviance residuals. On the left hand plot the
deviance residuals are shown for the model with homogeneous linear trends; in the middle
plot they are shown for the model with heterogeneous quadratic trends. On the right hand
side a quantile-quantile plot is shown with the deviance residuals of the first (left) against
the second model (middle).

pant with pattern S,C,S,V,S also has a very high residual for the fourth observation (V).

Participants with these type of changes are very hard to model, not only using the trend

vector model but also in MBCL models; they require un-smooth or irregular trends.

Because both models fit about equally well, and because the sample size is small it is

wise to have a parsimonious model. In Figure 3 we show the first model, the one favored

by the BIC. In this figure the mean trend for girls starts at Animation and then goes

into the Variety area, while the mean trend for boys also starts in Animation but then

passes Drama, Music, and ends at the border of Music and Sports.

In addition to the mean trends for boys and girls the individual trends are shown.

These can be obtained by computing the EAP estimates of the random effects for every

subject. The individual trends show a large variation although they all start in or near

Animation. For this solution the correlation between the random intercepts equals 0.86

and the correlation between the slopes 0.66. The intercept slope correlation on the first

axis equals -0.43 and for the second axis 0.30.
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Figure 3: The solution for the Adachi TV preference data. Mean trends for boys (green)
and girls (red) are presented. The dots on the trend vectors represent the predictions at
the five time points. Also shown are individual trends. Regions and category points are
indicated by letters: A = Animation, C = Cinema, D = Drama, M = Music, S = Sport,
and V = Variety.
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5.3 Schizophrenia example: investigating ordinality

The last example, where we re-analyze data from the National Institute of Mental Health

Schizophrenia Collaborative Study, has an ordinal response variable. Following Hedeker

and Gibbons (2006), we combine the three anti-psychotic drug groups into a single treat-

ment group and the square root of the week number is used as explanatory time variable

(Tit). The main question is whether there is a differential change across time for the treat-

ment group relative to the placebo group. Various descriptive statistics can be found in

Hedeker and Gibbons (2006).

The linear predictor for both the proportional odds model as well as the unidimen-

sional trend vector model is

ηit = α + β1Gi + β2Tit + β3GiTit + u0i,

where Gi represents the treatment (Gi = 1) or control group (Gi = 0) and Tit the time

point. In the case of the random intercepts and slopes model the linear predictor has the

following form

ηit = α + β1Gi + β2Tit + β3GiTit + u0i + u1iTit.

For the two dimensional model the linear predictors are

ηitm = αm + β1mGi + β2mTit + β3mGiTit + u0i.m (+u1i.mTit),

the parentheses at the end indicate the difference between a random intercepts model

and a random intercepts and slopes model.

The statistics do not agree about the preferred model, see Table 4. BIC points towards

the proportional odds model with random intercept and slope, while the AIC is smallest

for the two dimensional trend vector model. A detailed description of the solution of the

proportional odds model can be found in (Hedeker and Gibbons, 2006, pages 207-212).

Here we will show the two dimensional trend vector solution, to discover violations of the

ordinality assumption.

The solution of the two dimensional model is presented in Figure 4. The trend of

the treatment group follows the direction of the ordinal dimension. The trend for the
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Figure 4: The solution for two dimensional trend vector model with random intercepts and
slopes on the schizophrenia data set. Approximate 68% regions for the random intercepts
are given by the dashed ellipses. For the random slopes approximate 68% intervals are
indicated by the solid ellipses with center equal to the second dot on the trend vectors.
The digits represent the four categories: 1 normal or borderline mentally ill; 2 mildly or
moderately ill; 3 markedly ill; and 4 severely or among the most extremely ill.
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Table 4: Fit statistics for the schizophrenia data set. POM is the proportional Odds
Model. Interval refers to the trend vector model assuming equally spaced category points,
ordinal to the ordered category points case, and two-dimensional refers to the two di-
mensional model. Under Random the random effects vector is given where I represents
the random intercepts model and I + S the random intercepts and slopes model. The
number of fitted parameters is given under npar, -2LL is the deviance, BIC the Bayesian
Information Criterium, AIC is Akaike’s Information Criterion, and AICC is the small
sample bias corrected version of AIC.

Model Random npar -2LL BIC AIC AICC
POM I 7 3404.2 3446.7 3418.2 3418.2

I + S 9 3326.5 3381.2 3344.5 3344.6
interval No 5 3792.6 3829.5 3802.6 3802.7

I 6 3431.6 3468.1 3443.6 3443.7
I + S 8 3367.3 3416.0 3383.3 3383.4

ordinal No 7 3767.9 3819.5 3781.9 3781.9
I 8 3417.7 3466.4 3433.7 3433.8
I + S 10 3350.3 3411.1 3370.3 3370.4

two-dimensional I 14 3347.0 3432.1 3375.0 3375.2
I + S† 17 3308.8 3412.1 3342.8 3343.2

† The dimensionwise structure is reported. The intermediate and full structure did not
fit better.

placebo group is quite different and seems to stay away from the healthy category (1).

The disordinality seems to be present in the interaction effect of group by time. While

the treatment group obtains a growing probability of belonging to category normal or

borderline ill (1) over time, the placebo group does not develop into that direction at

all. The probability for category 1 for the placebo group remains zero, see also Table 5.

For the treatment group there is a definite progression, whereas for the placebo group

there is still a large probability of belonging to category four, severely ill, at the last time

point.

In this case the linear predictor contains both random intercepts and slopes. Each

individual has a different starting point and a different linear trajectory. As before, the

random effects are represented by ellipses. The dashed ellipse represents the random

intercept for the placebo group, while the dotted ellipse represents the random intercept

for the treatment group. The solid ellipses represent random slopes. The center of these

ellipses is at the second dot (representing T = 1) on each of the trend vectors. The

random intercepts are displacements of the starting point of the trend vectors, while the

random slopes change the length and direction of the linear trend vector.
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Table 5: Conditional probabilities for the four categories over time for the placebo and
treatment group, both given ui = 0

Category
group T 1 2 3 4
placebo 0 0.00 0.01 0.29 0.69

1 0.00 0.05 0.43 0.52
3 0.00 0.11 0.51 0.38
6 0.00 0.21 0.54 0.25

treatment 0 0.00 0.02 0.29 0.70
1 0.00 0.27 0.57 0.16
3 0.05 0.65 0.28 0.02
6 0.24 0.70 0.06 0.00

6 Discussion

We presented a mixed effects trend vector model for longitudinal multinomial data. The

multinomial distribution can be considered a multivariate distribution (Fahrmeier and

Tutz, 2001) and hence we have a multivariate problem. In the case that the response

variable has many categories standard methodology, i.e. the baseline category model,

becomes unfeasible due to the dimension of the random effects. In such cases one could

adopt quasi-likelihood or penalized likelihood methods but these methods are simpler

and approximations are often poorer (Hartzel, Agresti and Caffo, 2001; Molenberghs and

Verbeke, 2005). Following Takane (1996) we tackled the problem by using multidimen-

sional scaling techniques. The integral dimension then is no longer dependent on the

number of categories in the response variable but depends on the dimensionality of the

Euclidean space. In the TV watching example data the response variable has 6 response

categories. If only random intercepts are used in the mixed effects MBCL model 5 ran-

dom effects would be needed. However, often we would also like random slopes, which

would be computationally unfeasible. In a two dimensional trend vector model random

intercepts and slopes could be fitted for the TV watching data. Dimension reduction

not only makes estimation of these models possible but also increases the stability of the

final model due to the smaller number of parameters.

Another way to deal with the computational complexities of the random effects mod-

els is to assume that the latent variables (random effects) are categorical as in latent

class growth curve models (Vermunt, 2007) or latent Markov models (Langeheine and
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Van der Pol, 1990, 1994; Vermunt, Langeheine, and Böckenholt, 1999). Latent class

growth models, however, assume a discrete latent variable in contrast to the normally

distributed latent variables in the trend vector model and generalized linear mixed mod-

els. Each latent class then has its own developmental trajectory over time. Assuming

such a categorical latent variable solves the computational difficulties with respect to the

numerical integration. However, the optimization function of latent growth curve models

has many local optima. In latent class growth curve models, as in mixed effects trend

vector models, the temporal dynamics are assumed to be a gradual process (Rijmen,

Vansteelandt, and De Boeck, 2008). Latent Markov models, on the other hand, are ca-

pable of modeling both abrupt and smooth temporal patterns. In this respect it could be

beneficial to model the TV watching data using such an approach since since we found

large residuals for some cases with non smooth transitions. There is a danger, however,

of obtaining very small latent classes.

Another way to deal with the numerical problems of the random effects is to assume

a special structure of the random effects as in the bi-factor model (Gibbons and Hedeker,

1992; Rijmen, 2010). For a multinomial variable such an approach could only be incorpo-

rated if there is advance knowledge of which categories belong to which latent dimension.

Most often such knowledge is not available, unless the variable is a cross-classification of

several simpler categorical variables.

A second virtue of the presented models is that the solution can be neatly depicted

in a graphical display. The graphical display immediately shows trends over time for the

group(s) under study. We gave several examples throughout this paper. Understanding

polynomial trends and interactions in baseline category models is usually very difficult,

whereas in our graphical display this understanding is very easy.

In our mixed effects trend vector models we assumed constancy of the categories over

time, while the participants change across time. In other examples the category points

could change over time, for example in an election study where the political parties change

their election program. When both categories and participants are allowed to change

over time additional restrictions need to be imposed. Such additional constraints are

necessary to prevent categories and participants to move together in the same direction

in Euclidean space. Therefore, a single category or participant should be constrained to

be constant over time. The time effects then need to be interpreted in terms of relative
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change compared to this constant category/participant.

Similar graphical displays could be obtained by using multidimensional unfolding

techniques like PREFSCAL (Busing, et. al., 2005) where time and group information are

used as external variables. Multidimensional unfolding does not make any distributional

assumptions and parameters are estimated by least squares. In our procedure we assume a

multinomial distribution of the response variable given the random effects. An advantage

of the trend vector model is that it is possible to test effects, for example whether there is

a difference between boys and girls or treatment and control. Multidimensional unfolding

does not give such tests. In multidimensional unfolding the random effects are treated

as fixed effects. Therefore, if more subjects are available more parameters have to be

estimated. Under maximum likelihood this would bias the parameter estimates (see

Neyman and Scott, 1948).

In Section 5.2 we showed some residual plots to look at the fit of the model. For

generalized linear mixed models (GLMMs) little research has been conducted on residuals

and diagnostics for influential cases. Such statistics have been to be found really useful

for generalized linear models and linear models. Further research is needed to study

residuals and diagnostics and their properties for GLMMs and mixed effects models for

multinomial data.

Recently, in the IRT framework the classical models like the Rasch model and the two

parameter logistic model were extended to explanatory IRT models (Rijmen, Tuerlinckx,

De Boeck, and Kuppens, 2003; De Boeck and Wilson, 2004). Our mixed effects trend

vector model can also be applied to other types of hierarchical or multilevel data, for

example questionnaire data. In this case a mixed effects IPC model would result. Takane

(1996) proposed such a model without fixed effects or random slopes. Our mixed effects

IPC model can be conceived as an explanatory variant of the model proposed by Takane.

The trend vector model has to be contrasted with the squared logistic model (An-

drich, 1988) and similar unfolding IRT models. In the squared logistic model for binary

agree-disagree data the probability of agreeing is modeled using a unimodal curve. An

importance difference between this model and our IPC model is that the disagree cate-

gory is not homogeneous in unfolding IRT models. That is, people choosing the disagree

category can do so for two reasons, often denoted by disagree from below and disagree

from above. This means that this category has two positions on the unidimensional
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scale, which is implicit in the squared logistic model but more explicit in, for example,

the generalized graded unfolding model (Roberts, Donoghue, and Laughlin, 2000).

As discussed above, the multinomial distribution for a response variable with C cat-

egories can be considered as a multivariate binomial distribution, with dimensionality

C − 1. When C is large, the problem is high dimensional. Recently, there has been in-

creased interest in models for longitudinal multivariate data. Fieuws and Verbeke (2009)

provide an overview of joint models for high dimensional data. They distinguish between

four types of models, depending on two facets: whether or not latent variables are used

for reducing the dimensionality of the response space and whether or not latent variables

are used for the time dimension. In the first approach the variables are assumed to mea-

sure one (or more) latent factors or components. In the second approach it is assumed

that the observed measurements reflect a latent evolution for each of the outcomes. By

crossing both facets Fieuws and Verbeke distinguish four types of models: Models for

the evolution in observed variables (Type I), models for the latent evolution in observed

variables (Type II), models for the evolution in latent variables (Type III), and models

for the latent evolution in latent variables (Type IV).

We considered models with a latent variable for the time dimension, hence we pro-

posed models of type II (models in maximum dimensionality) and IV (models in reduced

dimensionality). For models of type IV we used multidimensional scaling ideas for re-

ducing the dimensionality. That is, we assumed an underlying latent space in which

relationships between subject points and response category points are specified by dis-

tances. In contrast, in factor analysis or principal component models, these relationships

are specified by inner-products or projections. Often inner product and distance methods

result in equivalent solutions, see Tsai and Böckenholt (2001) and De Rooij and Heiser

(2005). Equivalence of the inner product and distance methods occurs when there are so

called main effect parameters for both the ‘rows’ (subjects) and the ‘columns’ (categories)

in the model. If such a term is present in the model it absorbs the squared terms of the

Euclidean distance formulation and thus the two representations are equivalent. For our

model, however, there is no equivalent inner product representation, because there is no

main effect term for the categories of the response variable.
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Appendix: Annotated SAS code for examples

In this Appendix SAS NLMIXED code is shown for the examples in Sections 5.2 and 5.3.

In Figure 5 we present the code for the final model on the TV preference data.

On lines 002-005 the parameters are defined and starting values are given. On line

007 the identification restrictions of the model are given. On lines 009-010 the linear

predictors are defined and these are used in lines 012-014 to compute quadratic Euclidean

distances between the positions of the participants and the category points. From line

016 till 020 the probabilities are defined: First the denominator is computed and then

the probabilities for each class are defined. With these probabilities the likelihood is

defined in line 023-024 and the distribution of the random effects is specified on line

025. Finally, the Expected A Posteriori estimates of the random intercepts and slopes

are asked to be writen to files on lines 028-031.
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001 proc nlmixed data=adachi noad qpoints = 5;

002 PARMS

003 b01 0.2297

004 ...

005 r12 r13 r24 r34 0;

006 /*identification restriction*/

007 z11=0;z12=0;z21=1;z22=0;z32=1;

008 /*Code linear predictors- age centered */

009 eta1 = b01 + b21*GENDER + b11*(age-12.25) + u1 + (age-12.25) * u2;

010 eta2 = b02 + b22*GENDER + b12*(age-12.25) + u3 + (age-12.25) * u4;

011 /*Code squared distances*/

012 dist1= (eta1-z11)*(eta1-z11) + (eta2-z12)*(eta2-z12);

013 ...

014 dist6= (eta1-z61)*(eta1-z61) + (eta2-z62)*(eta2-z62);

015 /*compute probabilities*/

016 denom = exp(-(dist1)) + exp(-(dist2)) + exp(-(dist3)) + exp(-(dist4)) + exp(-(dist5)) + exp(-(dist6));

017 if (choice = 1) then p = exp(-(dist1)) / denom;

018 else if (choice = 2) then p = exp(-(dist2)) / denom;

019 ...

020 else if (choice = 6) then p = exp(-(dist6)) / denom;

021 /*Define likelihood*/

022 ll = log(p);

023 model choice ~ general(ll);

024 /*Specify random effect distribution*/

025 random u1 u2 u3 u4 normal([0,0,0,0], [s1*s1, r12*s1*s2 ,s2*s2, r13*s1*s3 ,0,s3*s3,0,r24*s2*s4,

r34*s3*s4,s4*s4]) subject = pident;

026 replicate freq;

027 /* EAP estimates */

028 predict u1 out= Int1;

029 predict u2 out= Slp1;

030 predict u3 out= Int2;

031 predict u4 out= Slp2;

032 run;

Figure 5: SAS NLMIXED code for selected model for TV preference data.
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In Figure 6 we present the code for the final model of the Schizophrenia study. On

lines 002-004 the parameters are defined and starting values are given. On line 006 the

identification restrictions of the model are given. On lines 008-009 the linear predictors

are defined and these are used in lines 011-014 to compute quadratic Euclidean distances

between the positions of the participants and the category points. From line 016 till 020

the probabilities are defined: First the denominator is computed and then the probabil-

ities for each class are defined. With these probabilities the likelihood is defined in line

022-023 and the distribution of the random effects is specified on line 024.
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001 proc nlmixed noad qpoints=5;

002 parms

003 b1 -b8 0 z31= 0 z41=0 z42= 0

004 sd1= 1 sd2 = 1 sd3= 1 sd4 = 1 cov12 cov34 0;

005 /*restrictions*/

006 z11= 0; z12 = 0; z21=1; z22= 0; z32=1;

007 /* linear predictor */

008 eta1 = b1 + b2*Time + b3* G + b4*G*Time + u1 + u2*Time;

009 eta2 = b5 + b6*Time + b7* G + b4*G*Time + u3 + u4*Time;

010 /* specify squared distances */

011 dist1 = (eta1-z11)*(eta1-z11) + (eta2-z12)*(eta2-z12);

012 dist2 = (eta1-z21)*(eta1-z21) + (eta2-z22)*(eta2-z22);

013 dist3 = (eta1-z31)*(eta1-z31) + (eta2-z32)*(eta2-z32);

014 dist4 = (eta1-z41)*(eta1-z41) + (eta2-z42)*(eta2-z42);

015 /* specify probabilities */

016 denom = exp(-dist1)+exp(-dist2)+exp(-dist3)+exp(-dist4);

017 if (RESP = 1) then p = exp(-dist1)/denom;

018 else if (RESP = 2) then p = exp(-dist2)/denom;

019 else if (RESP = 3) then p = exp(-dist3)/denom;

020 else if (RESP = 4) then p = exp(-dist4)/denom;

021 /* specify likelihood */

022 ll = log(p);

023 model RESP ~ general(ll);

024 random u1 u2 u3 u4 normal([0,0,0,0],[sd1*sd1,cov12,sd2*sd2,0,0, sd3*sd3,0,0,cov34,sd4*sd4]) subject = ID;

025 run;

Figure 6: SAS NLMIXED code for selected model for the Schizophrenia study
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